OFFSET
0,5
COMMENTS
The upper left corner of the array is T(0,1).
Without loss of generality, the permutation can be taken to be (1 2 ... k) (k+1 k+2 ... 2k) ... ((n-1)k+1 (n-1)k+2 ... nk).
Note that it is the partition that is invariant, not the individual parts. Thus for n=k=2 with permutation (1 2)(3 4), the partition 1,3|2,4 is counted; it maps to 2,4|1,3, which is the same partition.
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened (first 20 antidiagonals from Franklin T. Adams-Watters)
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
OEIS Wiki, Sorting numbers
FORMULA
E.g.f. for column k: exp(Sum_{d|k} (exp(d*x) - 1) / d).
Equivalently, column k is the exponential transform of a(n) = Sum_{d|k} d^(n-1); this represents a set of n k-cycles, each repeating the same d elements (parts), but starting in different places.
T(n,k) = Sum_{P a partition of n} SP(P) * Product_( (sigma_{i-1}(k))^(P(i)-1) ), where SP is A036040 or A080575, and P(i) is the number of parts in P of size i.
T(n,k) = Sum_{j=0..n-1} A036073(n,j)*k^(n-1-j). - Andrey Zabolotskiy, Oct 22 2017
EXAMPLE
The table starts:
1, 1, 1, 1, 1
1, 2, 2, 3, 2
2, 7, 8, 16, 10
5, 31, 42, 111, 70
15, 164, 268, 931, 602
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)
*add(d^(j-1), d=divisors(k))*A(n-j, k), j=1..n))
end:
seq(seq(A(n, 1+d-n), n=0..d), d=0..12); # Alois P. Heinz, Oct 29 2015
MATHEMATICA
max = 11; ClearAll[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[ Sum[ (Exp[d*x] - 1)/d, {d, Divisors[k]}]], {x, 0, max}], x]*Range[0, max]!; t[n_, k_] := col[k][[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}] ] (* Jean-François Alcover, Aug 08 2012, after e.g.f. *)
PROG
(PARI) amat(n, m)=local(r); r=matrix(n, m, i, j, 1); for(k=1, n-1, for(j=1, m, r[k+1, j]=sum (i=1, k, binomial(k-1, i-1)*sumdiv(j, d, r[k-i+1, j]*d^(i-1))))); r
acol(n, k)=local(fn); fn=exp(sumdiv(k, d, (exp(d*x+x*O(x^n))-1)/d)); vector(n+ 1, i, polcoeff(fn, i-1)*(i-1)!)
CROSSREFS
KEYWORD
AUTHOR
Franklin T. Adams-Watters, Jul 09 2009
EXTENSIONS
Offset set to 0 by Alois P. Heinz, Oct 29 2015
STATUS
approved