login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036073
Triangle of coefficients arising in calculation of A002872 and A002874 (sorting numbers).
3
1, 2, 1, 5, 1, 6, 15, 1, 11, 30, 52, 1, 20, 80, 150, 203, 1, 37, 210, 525, 780, 877, 1, 70, 560, 1785, 3395, 4263, 4140, 1, 135, 1526, 6125, 14140, 22288, 24556, 21147, 1, 264, 4240, 21420, 58842, 109998, 150402, 149040, 115975, 1, 521, 11970, 76385, 248115
OFFSET
0,2
COMMENTS
For connection to A002872, A002874, and other columns of A162663, see the formula in A162663. - Andrey Zabolotskiy, Oct 25 2017
REFERENCES
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
LINKS
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
FORMULA
E.g.f.: exp(exp(x*y)+y*(exp(x)-1)-1).
EXAMPLE
Triangle begins:
1;
. 2;
. 1, 5;
. 1, 6, 15;
. 1, 11, 30, 52;
. 1, 20, 80, 150, 203;
. 1, 37, 210, 525, 780, 877;
...
MAPLE
egf:= exp(exp(x*y)+y*(exp(x)-1)-1):
T:= (n, k)-> n!*coeff(series(coeff(series(egf, y, k+1)
, y, k), x, n+1), x, n):
seq(seq(T(n, k), k=min(n, 1)..n), n=0..10); # Alois P. Heinz, Mar 28 2013
PROG
(PARI) T(n, k) = { my(y = 'y + 'y*O('y^k), x = 'x + 'x*O('x^n); ); n!*polcoeff(polcoeff(exp(exp(x*y)+y*(exp(x)-1)-1), n, 'x), k, 'y); }
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()); /* print triangle */
\\ Michel Marcus, Mar 27 2013
(PARI) listpols(n)= {my(z = t + t*O(t^n)); zp = exp(exp(z)-1+(exp(p*z)-1)/p); for (i=0, n, print(i!*polcoeff(zp, i, t)); ); } \\ Michel Marcus, Mar 27 2013
CROSSREFS
Row sums give A001861.
Diagonal gives A000110(n+1) - Alois P. Heinz, Mar 27 2013
Cf. A162663.
Sequence in context: A014648 A260147 A263454 * A124227 A064865 A178472
KEYWORD
nonn,tabf
EXTENSIONS
Edited by Vladeta Jovovic, Sep 17 2003
Name corrected by Andrey Zabolotskiy, Oct 22 2017
STATUS
approved