The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036073 Triangle of coefficients arising in calculation of A002872 and A002874 (sorting numbers). 3
 1, 2, 1, 5, 1, 6, 15, 1, 11, 30, 52, 1, 20, 80, 150, 203, 1, 37, 210, 525, 780, 877, 1, 70, 560, 1785, 3395, 4263, 4140, 1, 135, 1526, 6125, 14140, 22288, 24556, 21147, 1, 264, 4240, 21420, 58842, 109998, 150402, 149040, 115975, 1, 521, 11970, 76385, 248115 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For connection to A002872, A002874, and other columns of A162663, see the formula in A162663. - Andrey Zabolotskiy, Oct 25 2017 REFERENCES T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. LINKS T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy] FORMULA E.g.f.: exp(exp(x*y)+y*(exp(x)-1)-1). EXAMPLE Triangle begins:   1;   .  2;   .  1,  5;   .  1,  6,  15;   .  1, 11,  30,  52;   .  1, 20,  80, 150, 203;   .  1, 37, 210, 525, 780, 877;   ... MAPLE egf:= exp(exp(x*y)+y*(exp(x)-1)-1): T:= (n, k)-> n!*coeff(series(coeff(series(egf, y, k+1)                 , y, k), x, n+1), x, n): seq(seq(T(n, k), k=min(n, 1)..n), n=0..10);  # Alois P. Heinz, Mar 28 2013 PROG (PARI) T(n, k) = { my(y = 'y + 'y*O('y^k), x = 'x + 'x*O('x^n); ); n!*polcoeff(polcoeff(exp(exp(x*y)+y*(exp(x)-1)-1), n, 'x), k, 'y); } for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()); /* print triangle */ \\ Michel Marcus, Mar 27 2013 (PARI) listpols(n)= {my(z = t + t*O(t^n)); zp = exp(exp(z)-1+(exp(p*z)-1)/p); for (i=0, n, print(i!*polcoeff(zp, i, t)); ); } \\ Michel Marcus, Mar 27 2013 CROSSREFS Row sums give A001861. Diagonal gives A000110(n+1) - Alois P. Heinz, Mar 27 2013 Cf. A162663. Sequence in context: A014648 A260147 A263454 * A124227 A064865 A178472 Adjacent sequences:  A036070 A036071 A036072 * A036074 A036075 A036076 KEYWORD nonn,tabf AUTHOR EXTENSIONS Edited by Vladeta Jovovic, Sep 17 2003 Name corrected by Andrey Zabolotskiy, Oct 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 17:41 EST 2021. Contains 349445 sequences. (Running on oeis4.)