OFFSET
1,4
COMMENTS
Of course, all part sizes must be greater than 1; that condition alone gives the Fibonacci numbers, which is thus an upper bound.
Also the number of periodic compositions of n, where a sequence is periodic if its cyclic rotations are not all different. Also compositions with non-relatively prime run-lengths. - Gus Wiseman, Nov 10 2019
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Hunki Baek, Sejeong Bang, Dongseok Kim, and Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014. See Table 2.
FORMULA
a(n) = Sum_{d|n & d<n} 2^(d-1) * (-mu(n/d)).
a(n) = 2^(n-1) - A000740(n).
a(n) = A152061(n)/2. - George Beck, Jan 20 2018
a(p) = 1 for p prime. - Chai Wah Wu, Sep 21 2024
EXAMPLE
For n=6, we have 5 compositions: <6>, <4,2>, <2,4>, <2,2,2>, and <3,3>.
From Gus Wiseman, Nov 10 2019: (Start)
The a(2) = 1 through a(9) = 4 non-relatively prime compositions:
(2) (3) (4) (5) (6) (7) (8) (9)
(2,2) (2,4) (2,6) (3,6)
(3,3) (4,4) (6,3)
(4,2) (6,2) (3,3,3)
(2,2,2) (2,2,4)
(2,4,2)
(4,2,2)
(2,2,2,2)
The a(2) = 1 through a(9) = 4 periodic compositions:
11 111 22 11111 33 1111111 44 333
1111 222 1313 121212
1212 2222 212121
2121 3131 111111111
111111 112112
121121
211211
11111111
The a(2) = 1 through a(9) = 4 compositions with non-relatively prime run-lengths:
11 111 22 11111 33 1111111 44 333
1111 222 1133 111222
1122 2222 222111
2211 3311 111111111
111111 111122
112211
221111
11111111
(End)
MAPLE
A178472 := n -> (2^n - add(mobius(n/d)*2^d, d in divisors(n)))/2:
seq(A178472(n), n=1..51); # Peter Luschny, Jan 21 2018
MATHEMATICA
Table[2^(n - 1) - DivisorSum[n, MoebiusMu[n/#]*2^(# - 1) &], {n, 51}] (* Michael De Vlieger, Jan 20 2018 *)
PROG
(PARI) vector(60, n, 2^(n-1)-sumdiv(n, d, 2^(d-1)*moebius(n/d)))
(Python)
from sympy import mobius, divisors
def A178472(n): return -sum(mobius(n//d)<<d-1 for d in divisors(n, generator=True) if d<n) # Chai Wah Wu, Sep 21 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, May 28 2010
EXTENSIONS
Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012
STATUS
approved