login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A178472
Number of compositions (ordered partitions) of n where the gcd of the part sizes is not 1.
41
0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 1, 32768, 1027, 65537, 79, 133088, 1, 262145, 4099, 524408, 1, 1056731, 1, 2097158, 16636, 4194305, 1, 8421248, 64, 16777712, 65539
OFFSET
1,4
COMMENTS
Of course, all part sizes must be greater than 1; that condition alone gives the Fibonacci numbers, which is thus an upper bound.
Also the number of periodic compositions of n, where a sequence is periodic if its cyclic rotations are not all different. Also compositions with non-relatively prime run-lengths. - Gus Wiseman, Nov 10 2019
LINKS
Hunki Baek, Sejeong Bang, Dongseok Kim, and Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014. See Table 2.
FORMULA
a(n) = Sum_{d|n & d<n} 2^(d-1) * (-mu(n/d)).
a(n) = 2^(n-1) - A000740(n).
a(n) = A152061(n)/2. - George Beck, Jan 20 2018
a(p) = 1 for p prime. - Chai Wah Wu, Sep 21 2024
EXAMPLE
For n=6, we have 5 compositions: <6>, <4,2>, <2,4>, <2,2,2>, and <3,3>.
From Gus Wiseman, Nov 10 2019: (Start)
The a(2) = 1 through a(9) = 4 non-relatively prime compositions:
(2) (3) (4) (5) (6) (7) (8) (9)
(2,2) (2,4) (2,6) (3,6)
(3,3) (4,4) (6,3)
(4,2) (6,2) (3,3,3)
(2,2,2) (2,2,4)
(2,4,2)
(4,2,2)
(2,2,2,2)
The a(2) = 1 through a(9) = 4 periodic compositions:
11 111 22 11111 33 1111111 44 333
1111 222 1313 121212
1212 2222 212121
2121 3131 111111111
111111 112112
121121
211211
11111111
The a(2) = 1 through a(9) = 4 compositions with non-relatively prime run-lengths:
11 111 22 11111 33 1111111 44 333
1111 222 1133 111222
1122 2222 222111
2211 3311 111111111
111111 111122
112211
221111
11111111
(End)
MAPLE
A178472 := n -> (2^n - add(mobius(n/d)*2^d, d in divisors(n)))/2:
seq(A178472(n), n=1..51); # Peter Luschny, Jan 21 2018
MATHEMATICA
Table[2^(n - 1) - DivisorSum[n, MoebiusMu[n/#]*2^(# - 1) &], {n, 51}] (* Michael De Vlieger, Jan 20 2018 *)
PROG
(PARI) vector(60, n, 2^(n-1)-sumdiv(n, d, 2^(d-1)*moebius(n/d)))
(Python)
from sympy import mobius, divisors
def A178472(n): return -sum(mobius(n//d)<<d-1 for d in divisors(n, generator=True) if d<n) # Chai Wah Wu, Sep 21 2024
CROSSREFS
Periodic binary words are A152061.
Sequence in context: A036073 A124227 A064865 * A337667 A331888 A178470
KEYWORD
nonn
AUTHOR
EXTENSIONS
Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012
STATUS
approved