login
A152061
Counts of unique periodic binary strings of length n.
14
0, 0, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 76, 2, 130, 38, 256, 2, 568, 2, 1036, 134, 2050, 2, 4336, 32, 8194, 512, 16396, 2, 33814, 2, 65536, 2054, 131074, 158, 266176, 2, 524290, 8198, 1048816, 2, 2113462, 2, 4194316, 33272, 8388610, 2, 16842496, 128, 33555424
OFFSET
0,3
COMMENTS
a(p) = 2 for p prime.
LINKS
Achilles A. Beros, Bjørn Kjos-Hanssen, and Daylan Kaui Yogi, Planar digraphs for automatic complexity, arXiv:1902.00812 [cs.FL], 2019.
FORMULA
a(n) = 2^n - A001037(n) * n for n>0, a(0) = 0.
a(n) = 2^n - A027375(n) for n>0, a(0) = 0.
a(n) = 2^n - Sum_{d|n} mu(n/d) 2^d for n>0, a(0) = 0.
a(n) = 2^n - A143324(n,2).
a(n) = 2 * A178472(n) for n > 0. - Alois P. Heinz, Jul 04 2019
EXAMPLE
a(3) = 2 = |{ 000, 111 }|, a(4) = 4 = |{ 0000, 1111, 0101, 1010 }|.
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 0, 2^n -add(mobius(n/d)*2^d, d=divisors(n))):
seq(a(n), n=0..100); # Alois P. Heinz, Sep 26 2011
MATHEMATICA
a[0] = 0; a[n_] := 2^n - Sum[MoebiusMu[n/d]*2^d, {d, Divisors[n]}];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 04 2019 *)
PROG
(Python)
from sympy import mobius, divisors
def A152061(n): return -sum(mobius(n//d)<<d for d in divisors(n, generator=True) if d<n) # Chai Wah Wu, Sep 21 2024
CROSSREFS
Row sums of A050870.
A050871 is bisection (even part). - R. J. Mathar, Sep 24 2011
Sequence in context: A326486 A357817 A053204 * A103314 A306019 A194560
KEYWORD
nonn
AUTHOR
Jin S. Choi, Sep 24 2011
STATUS
approved