login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A337667
Number of compositions of n where any two parts have a common divisor > 1.
16
1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
OFFSET
0,5
COMMENTS
First differs from A178472 at a(31) = 7, a(31) = 1.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..290
EXAMPLE
The a(2) = 1 through a(10) = 17 compositions (A = 10):
2 3 4 5 6 7 8 9 A
22 24 26 36 28
33 44 63 46
42 62 333 55
222 224 64
242 82
422 226
2222 244
262
424
442
622
2224
2242
2422
4222
22222
MATHEMATICA
stabQ[u_, Q_]:=And@@Not/@Q@@@Tuples[u, 2];
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n], stabQ[#, CoprimeQ]&]], {n, 0, 15}]
CROSSREFS
A101268 = 1 + A337462 is the pairwise coprime version.
A328673 = A200976 + 1 is the unordered version.
A337604 counts these compositions of length 3.
A337666 ranks these compositions.
A337694 gives Heinz numbers of the unordered version.
A337983 is the strict case.
A051185 counts intersecting set-systems, with spanning case A305843.
A318717 is the unordered strict case.
A319786 is the version for factorizations, with strict case A318749.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
Sequence in context: A124227 A064865 A178472 * A331888 A178470 A093127
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 05 2020
STATUS
approved