OFFSET
0,3
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..220
EXAMPLE
The a(0) = 1 through a(5) = 16 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SameQ@@#||CoprimeQ@@Union[#]&]], {n, 0, 15}]
CROSSREFS
A304712 is the unordered version.
A337562 is the strict case.
A337602 is the length-3 case.
A337665 does not consider a singleton to be coprime unless it is (1).
A337695 ranks the complement of these compositions.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime length-3 compositions.
A337561 counts pairwise coprime strict compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 21 2020
STATUS
approved