OFFSET
0,5
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10000
EXAMPLE
The a(3) = 1 through a(8) = 18 triples:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6)
(1,2,1) (1,2,2) (1,2,3) (1,3,3) (1,2,5)
(2,1,1) (1,3,1) (1,3,2) (1,5,1) (1,3,4)
(2,1,2) (1,4,1) (2,2,3) (1,4,3)
(2,2,1) (2,1,3) (2,3,2) (1,5,2)
(3,1,1) (2,2,2) (3,1,3) (1,6,1)
(2,3,1) (3,2,2) (2,1,5)
(3,1,2) (3,3,1) (2,3,3)
(3,2,1) (5,1,1) (2,5,1)
(4,1,1) (3,1,4)
(3,2,3)
(3,3,2)
(3,4,1)
(4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
(6,1,1)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {3}], SameQ@@#||CoprimeQ@@Union[#]&]], {n, 0, 100}]
CROSSREFS
A220377*6 is the strict case.
A337600 is the unordered version.
A337603 does not consider a singleton to be coprime unless it is (1).
A337664 counts these compositions of any length.
A000740 counts relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A000217 counts 3-part compositions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 20 2020
STATUS
approved