|
|
A023023
|
|
Number of partitions of n into 3 unordered relatively prime parts.
|
|
22
|
|
|
1, 1, 2, 2, 4, 4, 6, 6, 10, 8, 14, 12, 16, 16, 24, 18, 30, 24, 32, 30, 44, 32, 50, 42, 54, 48, 70, 48, 80, 64, 80, 72, 96, 72, 114, 90, 112, 96, 140, 96, 154, 120, 144, 132, 184, 128, 196, 150, 192, 168, 234, 162, 240, 192, 240, 210, 290, 192, 310, 240, 288, 256, 336, 240, 374
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,3
|
|
LINKS
|
|
|
FORMULA
|
G.f. for the number of partitions of n into m unordered relatively prime parts is Sum(moebius(k)*x^(m*k)/Product(1-x^(i*k), i=1..m), k=1..infinity). - Vladeta Jovovic, Dec 21 2004
a(n) = (n^2/12)*Product_{prime p|n} (1 - 1/p^2) = A007434(n)/12 for n > 3 (proved by Mohamed El Bachraoui). [Jonathan Sondow, May 27 2009]
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} floor(1/gcd(i,k,n-i-k)). - Wesley Ivan Hurt, Jan 02 2021
|
|
EXAMPLE
|
The a(3) = 1 through a(13) = 14 triples (A = 10, B = 11):
111 211 221 321 322 332 432 433 443 543 544
311 411 331 431 441 532 533 552 553
421 521 522 541 542 651 643
511 611 531 631 551 732 652
621 721 632 741 661
711 811 641 831 733
722 921 742
731 A11 751
821 832
911 841
922
931
A21
B11
(End)
|
|
MATHEMATICA
|
Table[Length[Select[IntegerPartitions[n, {3}], GCD@@#==1&]], {n, 3, 50}] (* Gus Wiseman, Oct 08 2020 *)
|
|
CROSSREFS
|
A000837 counts these partitions of any length.
A001399(n-3) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A307719 is the pairwise coprime instead of relatively prime version.
A337599 is the pairwise non-coprime instead of relative prime version.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
Cf. A000010, A000217, A007434, A055684, A078374, A200976, A220377, A302698, A327516, A337563, A337600, A337605.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|