login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023024
Number of partitions of n into 4 unordered relatively prime parts.
4
1, 1, 2, 3, 4, 6, 8, 11, 12, 18, 20, 26, 29, 39, 39, 54, 54, 69, 73, 94, 89, 119, 118, 144, 145, 185, 169, 225, 215, 259, 258, 317, 291, 378, 357, 423, 410, 511, 457, 588, 547, 639, 626, 764, 679, 861, 792, 933, 896, 1089, 963, 1203, 1112, 1296, 1240, 1495, 1302, 1650
OFFSET
4,3
FORMULA
G.f.: Sum_{k>=1} mu(k)*x^(4*k) / Product_{j=1..4} (1 - x^(j*k)). - Ilya Gutkovskiy, Aug 31 2019
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} [gcd(k,j,i,n-i-j-k) = 1], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
MATHEMATICA
Table[Sum[Sum[Sum[KroneckerDelta[GCD[k, j, i, (n - i - j - k)], 1], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 4, 80}] (* Wesley Ivan Hurt, Jan 17 2021 *)
CROSSREFS
Column 4 of A282750.
Sequence in context: A353721 A263132 A018502 * A018362 A033056 A060469
KEYWORD
nonn
STATUS
approved