|
|
A000742
|
|
Number of compositions of n into 4 ordered relatively prime parts.
(Formerly M3381 N1362)
|
|
12
|
|
|
1, 4, 10, 20, 34, 56, 80, 120, 154, 220, 266, 360, 420, 560, 614, 816, 884, 1120, 1210, 1540, 1572, 2020, 2080, 2544, 2638, 3276, 3200, 4060, 4040, 4840, 4896, 5960, 5710, 7140, 6954, 8216, 8136, 9880, 9244, 11480, 11010, 12824, 12650, 15180, 14024, 17276
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,2
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Marius A. Burtea, Table of n, a(n) for n = 4..10000
H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
N. J. A. Sloane, Transforms
|
|
FORMULA
|
Möbius transform of C(n-1,3).
G.f.: Sum_{k>=1} mu(k) * x^(4*k) / (1 - x^k)^4. - Ilya Gutkovskiy, Feb 05 2020
|
|
MAPLE
|
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 3), d=divisors(n)):
seq(a(n), n=4..50); # Alois P. Heinz, Feb 05 2020
|
|
MATHEMATICA
|
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 3], {k, 1, n}]; Table[a[n], {n, 4, 51}] (* Jean-François Alcover, Feb 11 2016 *)
|
|
PROG
|
(MAGMA) [&+[MoebiusMu(n div d)*Binomial(d-1, 3):d in Divisors(n)]:n in[4..49]]; // Marius A. Burtea, Feb 08 2020
|
|
CROSSREFS
|
Cf. A000741, A000743, A023031, A023032, A023033, A023034, A023035.
Sequence in context: A008013 A301154 A024991 * A301134 A132152 A008234
Adjacent sequences: A000739 A000740 A000741 * A000743 A000744 A000745
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Offset changed to 4 by Ilya Gutkovskiy, Feb 05 2020
|
|
STATUS
|
approved
|
|
|
|