login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into 3 unordered relatively prime parts.
22

%I #35 Jan 05 2025 19:51:34

%S 1,1,2,2,4,4,6,6,10,8,14,12,16,16,24,18,30,24,32,30,44,32,50,42,54,48,

%T 70,48,80,64,80,72,96,72,114,90,112,96,140,96,154,120,144,132,184,128,

%U 196,150,192,168,234,162,240,192,240,210,290,192,310,240,288,256,336,240,374

%N Number of partitions of n into 3 unordered relatively prime parts.

%H Fausto A. C. Cariboni, <a href="/A023023/b023023.txt">Table of n, a(n) for n = 3..10000</a>

%H Mohamed El Bachraoui, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/46_47-4/Bachraoui.pdf">Relatively Prime Partitions with Two and Three Parts</a>, Fibonacci Quart. 46/47 (2008/2009), no. 4, 341-345.

%F G.f. for the number of partitions of n into m unordered relatively prime parts is Sum(moebius(k)*x^(m*k)/Product(1-x^(i*k), i=1..m), k=1..infinity). - _Vladeta Jovovic_, Dec 21 2004

%F a(n) = (n^2/12)*Product_{prime p|n} (1 - 1/p^2) = A007434(n)/12 for n > 3 (proved by Mohamed El Bachraoui). [_Jonathan Sondow_, May 27 2009]

%F a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} floor(1/gcd(i,k,n-i-k)). - _Wesley Ivan Hurt_, Jan 02 2021

%e From _Gus Wiseman_, Oct 08 2020: (Start)

%e The a(3) = 1 through a(13) = 14 triples (A = 10, B = 11):

%e 111 211 221 321 322 332 432 433 443 543 544

%e 311 411 331 431 441 532 533 552 553

%e 421 521 522 541 542 651 643

%e 511 611 531 631 551 732 652

%e 621 721 632 741 661

%e 711 811 641 831 733

%e 722 921 742

%e 731 A11 751

%e 821 832

%e 911 841

%e 922

%e 931

%e A21

%e B11

%e (End)

%t Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&]],{n,3,50}] (* _Gus Wiseman_, Oct 08 2020 *)

%Y Cf. A023024-A023030, A000742-A000743, A023032-A023035.

%Y A000741 is the ordered version.

%Y A000837 counts these partitions of any length.

%Y A001399(n-3) does not require relative primality.

%Y A023022 is the 2-part version.

%Y A101271 is the strict case.

%Y A284825 counts the case that is also pairwise non-coprime.

%Y A289509 intersected with A014612 gives the Heinz numbers.

%Y A307719 is the pairwise coprime instead of relatively prime version.

%Y A337599 is the pairwise non-coprime instead of relative prime version.

%Y A008284 counts partitions by sum and length.

%Y A078374 counts relatively prime strict partitions.

%Y A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

%Y Cf. A000010, A000217, A007434, A055684, A078374, A200976, A220377, A302698, A327516, A337563, A337600, A337605.

%K nonn,changed

%O 3,3

%A _David W. Wilson_