login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A211540
Number of ordered triples (w,x,y) with all terms in {1..n} and 2w = 3x + 4y.
25
0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290
OFFSET
0,8
COMMENTS
For a guide to related sequences, see A211422.
Also the number of partitions of n+1 into three parts, where each part > 1. - Peter Woodward, May 25 2015
a(n) is also equal to the number of partitions of n+4 into three distinct parts, where each part > 1. - Giovanni Resta, May 26 2015
Number of different distributions of n+1 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Dec 31 2015
After the first three terms, partial sums of A008615. - Robert Israel, Dec 31 2015
For n >= 2, also the number of partitions of n - 2 into 3 parts. The Heinz numbers of these partitions are given by A014612. - Gus Wiseman, Oct 11 2020
LINKS
Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
Ece Uslu and Esin Becenen, Identical Object Distributions.
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = A069905(n-2) = A001399(n-5) for n >= 5. - Alois P. Heinz, Nov 03 2012
a(n) = 3*k^2-6*k+3 (for n = 6*k-3), 3*k^2-5*k+2 (for n = 6*k-2), 3*k^2-4*k+1 (for n = 6*k-1), 3*k^2-3*k+1 (for n = 6*k), 3*k^2-2*k (for n = 6*k+1), 3*k^2-k (for n = 6*k+2). - Ece Uslu, Esin Becenen, Dec 31 2015
a(n) = A004526(n-2) + a(n-2) for n > 2. - Ece Uslu, Esin Becenen, Dec 31 2015
G.f.: x^5/(1 - x - x^2 + x^4 + x^5 - x^6). - Robert Israel, Dec 31 2015
a(n) = Sum_{k=1..floor(n/3)} floor((n-k)/2)-k. - Wesley Ivan Hurt, Apr 27 2019
From Gus Wiseman, Oct 11 2020: (Start)
a(n+2) = A069905(n) = A001399(n-3) counts 3-part partitions.
a(n-1) = A069905(n-3) = A001399(n-6) counts 3-part strict partitions.
a(n-1) = A069905(n-3) = A001399(n-6) counts 3-part partitions with no 1's.
a(n-4) = A069905(n-6) = A001399(n-9) counts 3-part strict partitions with no 1's.
A000217(n-2) counts 3-part compositions.
a(n-1)*6 = A069905(n-3)*6 = A001399(n-6)*6 counts 3-part strict compositions.
A000217(n-5) counts 3-part compositions with no 1's.
a(n-4)*6 = A069905(n-6)*6 = A001399(n-9)*6 counts 3-part strict compositions with no 1's.
(End)
EXAMPLE
a(5) = a(6) = 1 with only one ordered triple (5,2,1). - Michael Somos, Feb 02 2015
a(11) = 5 Number of different distributions of 11 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - Ece Uslu, Esin Becenen, Dec 31 2015
a(1) = a(2) = a(3) = a(4) = a(5) = 0, since with fewer than 6 identical balls there is no such distribution with 3 boxes that holds for 0 < x < y < z. - Ece Uslu, Esin Becenen, Dec 31 2015
G.f.: x^5 + x^6 + 2*x^7 + 3*x^8 + 4*x^9 + 5*x^10 + 7*x^11 + 8*x^12 + ...
From Gus Wiseman, Oct 11 2020: (Start)
The a(5) = 1 through a(15) = 14 partitions of n + 1 into three parts > 1 [Woodward] are the following (A = 10, B = 11, C = 12). The ordered version is A000217(n - 4) and the Heinz numbers are A046316.
222 322 332 333 433 443 444 544 554 555 655
422 432 442 533 543 553 644 654 664
522 532 542 552 643 653 663 754
622 632 633 652 662 744 763
722 642 733 743 753 772
732 742 752 762 844
822 832 833 843 853
922 842 852 862
932 933 943
A22 942 952
A32 A33
B22 A42
B32
C22
The a(5) = 1 through a(15) = 14 partitions of n + 4 into three distinct parts > 1 [Resta] are the following (A = 10, B = 11, C = 12, D = 13, E = 14). The ordered version is A211540*6 and the Heinz numbers are A046389.
432 532 542 543 643 653 654 754 764 765 865
632 642 652 743 753 763 854 864 874
732 742 752 762 853 863 873 964
832 842 843 862 872 954 973
932 852 943 953 963 982
942 952 962 972 A54
A32 A42 A43 A53 A63
B32 A52 A62 A72
B42 B43 B53
C32 B52 B62
C42 C43
D32 C52
D42
E32
The a(5) = 1 through a(15) = 14 partitions of n + 1 into three distinct parts [Uslu and Becenen] are the following (A = 10, B = 11, C = 12, D = 13). The ordered version is A211540(n)*6 and the Heinz numbers are A007304.
321 421 431 432 532 542 543 643 653 654 754
521 531 541 632 642 652 743 753 763
621 631 641 651 742 752 762 853
721 731 732 751 761 843 862
821 741 832 842 852 871
831 841 851 861 943
921 931 932 942 952
A21 941 951 961
A31 A32 A42
B21 A41 A51
B31 B32
C21 B41
C31
D21
(End)
MAPLE
f:= gfun:-rectoproc({a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6), seq(a(i)=0, i=0..4), a(5)=1}, a(n), remember):
seq(f(i), i=0..100); # Robert Israel, Dec 31 2015
MATHEMATICA
t[n_] := t[n] = Flatten[Table[-2 w + 3 x + 4 y, {w, n}, {x, n}, {y, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 80}] (* A211540 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
Table[Length[Select[IntegerPartitions[n+1, {3}], UnsameQ@@#&]], {n, 0, 30}] (* Gus Wiseman, Oct 05 2020 *)
PROG
(PARI) {a(n) = round( (n-2)^2 / 12 )}; / * Michael Somos, Feb 02 2015 */
(Magma) I:=[0, 0, 0, 0, 0, 1]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
(PARI) concat(vector(5), Vec(x^5/(1-x-x^2+x^4+x^5-x^6) + O(x^100))) \\ Altug Alkan, Jan 10 2016
CROSSREFS
All of the following pertain to 3-part strict partitions.
- A000009 counts these partitions of any length, with non-strict version A000041.
- A007304 gives the Heinz numbers, with non-strict version A014612.
- A101271 counts the relatively prime case, with non-strict version A023023.
- A220377 counts the pairwise coprime case, with non-strict version A307719.
- A337605 counts the pairwise non-coprime case, with non-strict version A337599.
Sequence in context: A034163 A242678 A034092 * A001399 A069905 A008761
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2012
STATUS
approved