login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0. 106
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.

...

sequence... f(w,x,y,n) ..... related sequences

A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4

A211422 ... w^2+x*y ........ (t-1)/8, A120486

A211423 ... w^2+2x*y ....... (t-1)/4

A211424 ... w^2+3x*y ....... (t-1)/4

A211425 ... w^2+4x*y ....... (t-1)/4

A211426 ... 2w^2+x*y ....... (t-1)/4

A211427 ... 3w^2+x*y ....... (t-1)/4

A211428 ... 2w^2+3x*y ...... (t-1)/4

A211429 ... w^3+x*y ........ (t-1)/4

A211430 ... w^2+x+y ........ (t-1)/2

A211431 ... w^3+(x+y)^2 .... (t-1)/2

A211432 ... w^2-x^2-y^2 .... (t-1)/8

A003215 ... w+x+y .......... (t-1)/2, A045943

A202253 ... w+2x+3y ........ (t-1)/2, A143978

A211433 ... w+2x+4y ........ (t-1)/2

A211434 ... w+2x+5y ........ (t-1)/4

A211435 ... w+4x+5y ........ (t-1)/2

A211436 ... 2w+3x+4y ....... (t-1)/2

A211437 ... 2w+3x+5y ....... (t-1)/2

A211438 ... 2w+2x+2y ....... (t-1)/2, A118277

A001844 ... w+x+2y ......... (t-1)/4, A000217

A211439 ... 2+3x+3y ........ (t-1)/2

A211440 ... 2x+3x+3y ....... (t-1)/2

A028896 ... w+x+y-1 ........ t/6, A000217

A211411 ... w+x+y-2 ........ t/3, A028387

A182074 ... w^2+x*y-n ...... t/4, A028387

A000384 ... w+x+y-n

A000217 ... w+x+y-2n

A211437 ... w*x*y-n ........ t/4, A007425

A211480 ... w+2x+3y-1

A211481 ... 2+2x+3y-n

A028896 ... (w+x+y)^3-1..... t/6, A000217

A211482 ... w*x+w*y+x*y-w*x*z

A211483 ... (n+w)^2-x-y

A182112 ... (n+w)^2-x-y-w

...

For the following sequences, S={1,...,n}, rather than

{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.

A132188 ... w^2-x*y

A211506 ... w^2-x*y-n

A211507 ... w^2-x*y+n

A211508 ... w^2+x*y-n

A211509 ... w^2+x*y-2n

A211510 ... w^2-x*y+2n

A211511 ... w^2-2x*y ....... t/2

A211512 ... w^2-3x*y ....... t/2

A211513 ... 2w^2-x*y ....... t/2

A211514 ... 3w^2-x*y ....... t/2

A211515 ... w^3-x*y

A211516 ... w^2-x-y

A211517 ... w^3-(x+y)^2

A063468 ... w^2-x^2-y^2 .... t/2

A000217 ... w+x-y

A001399 ... w-2x-3y

A211519 ... w-2x+3y

A008810 ... w+2x-3y

A001399 ... w-2x-3y

A008642 ... w-2x-4y

A211520 ... w-2x+4y

A211521 ... w+2x-4y

A000115 ... w-2x-5y

A211522 ... w-2x+5y

A211523 ... w+2x-5y

A211524 ... w-3x-5y

A211533 ... w-3x+5y

A211523 ... w+3x-5y

A211535 ... w-4x-5y

A211536 ... w-4x+5y

A008812 ... w+4y-5y

A055998 ... w+x+y-2n

A074148 ... 2w+x+y-2n

A211538 ... 2w+2x+y-2n

A211539 ... 2w+2x-y-2n

A211540 ... 2w-3x-4y

A211541 ... 2w-3x+4y

A211542 ... 2w+3x-4y

A211543 ... 2w-3x-5y

A211544 ... 2w-3x+5y

A074148 ... 2w+3x-5y

A008805 ... w-2x-2y (repeated triangular numbers)

A001318 ... w-2x+2y

A000982 ... w+x-2y

A211534 ... w-3x-3y

A211546 ... w-3x+3y (triply repeated triangular numbers)

A211547 ... 2w-3x+3y (triply repeated squares)

A082667 ... 2w-3x+3y

A055998 ... w-x-y+2

A001399 ... w-2x-3y+1

A108579 ... w-2x-3y+n

...

Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.

A211545 ... w+x+y>0; recurrence degree: 4

A211612 ... w+x+y>=0

A211613 ... w+x+y>1

A211614 ... w+x+y>2

A211615 ... |w+w+y|<=1

A211616 ... |w+w+y|<=2

A211617 ... 2w+x+y>0; recurrence degree: 5

A211618 ... 2w+x+y>1

A211619 ... 2w+x+y>2

A211620 ... |2w+x+y|<1

A211621 ... w+2x+3y>0

A211622 ... w+2x+3y>1

A211623 ... |w+w+y|<=1

A211624 ... w+2x+2y>0; recurrence degree: 6

A211625 ... w+3x+3y>0; recurrence degree: 8

A211626 ... w+4x+4y>0; recurrence degree: 10

A211627 ... w+5x+5y>0; recurrence degree: 12

A211628 ... 3w+x+y>0; recurrence degree: 6

A211629 ... 4w+x+y>0; recurrence degree: 7

A211630 ... 5w+x+y>0; recurrence degree: 8

A211631 ... w^2>x^2+y^2; all terms divisible by 8

A211632 ... 2w^2>x^2+y^2; all terms divisible by 8

A211633 ... w^2>2x^2+2y^2; all terms divisible by 8

...

Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.

A211634 ... w^2<=x^2+y^2

A211635 ... w^2<x^2+y^2; see Comments at A211790

A211636 ... w^2>=x^2+y^2

A211637 ... w^2>x^2+y^2

A211638 ... w^2+x^2+y^2<n

A211639 ... w^2+x^2+y^2<=n

A211640 ... w^2+x^2+y^2>n

A211641 ... w^2+x^2+y^2>=n

A211642 ... w^2+x^2+y^2<2n

A211643 ... w^2+x^2+y^2<=2n

A211644 ... w^2+x^2+y^2>2n

A211645 ... w^2+x^2+y^2>=2n

A211646 ... w^2+x^2+y^2<3n

A211647 ... w^2+x^2+y^2<=3n

A063691 ... w^2+x^2+y^2=n

A063649 ... w^2+x^2+y^2=2n

A211648 ... w^2+x^2+y^2=3n

A211650 ... w^3<x^3+y^3; see Comments at A211790

A211651 ... w^3>x^3+y^3; see Comments at A211790

A211652 ... w^4<x^4+y^4; see Comments at A211790

A211653 ... w^4>x^4+y^4; see Comments at A211790

LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..10000

EXAMPLE

a(1) counts these triples:

(-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0),

(0,0,1), (0,1,0), (1,-1,1), (1,1,-1).

MATHEMATICA

t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]

c[n_] := Count[t[n], 0]

t = Table[c[n], {n, 0, 70}] (* A211422 *)

(t - 1)/8                   (* A120486 *)

CROSSREFS

Cf. A120486.

Sequence in context: A004768 A226323 A211432 * A035198 A271186 A253705

Adjacent sequences:  A211419 A211420 A211421 * A211423 A211424 A211425

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 09:49 EDT 2017. Contains 288813 sequences.