login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000115
Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).
(Formerly M0279 N0098)
6
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 29, 31, 34, 36, 39, 42, 45, 48, 51, 54, 58, 61, 65, 68, 72, 76, 80, 84, 88, 92, 97, 101, 106, 110, 115, 120, 125, 130, 135, 140, 146, 151, 157, 162, 168, 174, 180, 186, 192, 198, 205, 211, 218, 224, 231, 238
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, or 5.
First differences are in A008616. First differences of A001304. Pairwise sums of A008720.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,5).
M. Jeger, Ein partitions problem ..., Elemente de Math., 13 (1958), 97-120.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = round((n+4)^2/20).
a(n) = a(-8 - n) for all n in Z. - Michael Somos, May 28 2014
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + ...
MAPLE
1/((1-x)*(1-x^2)*(1-x^5)): seq(coeff(series(%, x, n+1), x, n), n=0..65);
# next Maple program:
s:=proc(n) if n mod 5 = 0 then RETURN(1); fi; if n mod 5 = 1 then RETURN(0); fi; if n mod 5 = 2 then RETURN(1); fi; if n mod 5 = 3 then RETURN(-1); fi; if n mod 5 = 4 then RETURN(-1); fi; end: f:=n->(2*n^2+16*n+27+5*(-1)^n+8*s(n))/40: seq(f(n), n=0..65); # from Jeger's paper
MATHEMATICA
nn=50; CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^5), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 20 2013 *)
LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 1}, {1, 1, 2, 2, 3, 4, 5, 6}, 70] (* Harvey P. Dale, Sep 27 2019 *)
PROG
(Magma) [Round((n+4)^2/20): n in [0..70]]; // Vincenzo Librandi, Jun 23 2011
(PARI) a(n)=(n^2+8*n+26)\20 \\ Charles R Greathouse IV, Jun 23 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved