login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211519
Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=2x-3y.
2
0, 1, 2, 3, 6, 8, 11, 15, 19, 23, 29, 34, 40, 47, 54, 61, 70, 78, 87, 97, 107, 117, 129, 140, 152, 165, 178, 191, 206, 220, 235, 251, 267, 283, 301, 318, 336, 355, 374, 393, 414, 434, 455, 477, 499, 521, 545, 568, 592, 617, 642, 667, 694, 720, 747, 775
OFFSET
1,3
COMMENTS
For a guide to related sequences, see A211422.
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
G.f.: x^2*(1 + x + x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)). - Colin Barker, Dec 02 2017
a(n) = floor(((n-1)^2)/4) + floor((n-2)/3) + 1. - Ridouane Oudra, Jun 12 2020
a(n) = A001399(n-2)+A001399(n-3)+A001399(n-5). - R. J. Mathar, Jun 23 2021~
EXAMPLE
For n = 4, 1 = 2*2-3*1, 2 = 2*4-3*2 and 3 = 2*3-3*1, so (1,2,1), (2,4,2) and (3,3,1) are solutions and a(4) = 3. - Bernard Schott, Jan 27 2020
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w - 2 x + 3 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 1, 80}] (* A211519 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 1, 2, 3, 6, 8}, 56] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(0, Vec(x*(1 + x + x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Dec 02 2017
(PARI) a(n)=(n-1)^2\4 + (n+1)\3 \\ Charles R Greathouse IV, Jun 12 2020
(Magma) [ #[<w, x, y>:w, x, y in [1..n]|w eq 2*x-3*y]: n in [1..56]]; // Marius A. Burtea, Jan 26 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 56); [0] cat Coefficients(R!(x^2*(1+x+x^3) / ((1-x)^3*(1+x)*(1+x+x^2)))); // Marius A. Burtea, Jan 26 2020
CROSSREFS
Cf. A211422.
Sequence in context: A371002 A127758 A185599 * A329384 A342493 A353903
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2012
EXTENSIONS
Name and offset corrected by Pontus von Brömssen, Jan 26 2020
STATUS
approved