login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329384 G.f.: (1 + x) * (1 + x^2) * (1 + x^3) * Product_{k>=1} (1 + x^k). 1
1, 2, 3, 6, 8, 11, 16, 20, 26, 34, 43, 54, 68, 84, 103, 127, 154, 186, 225, 269, 321, 383, 453, 535, 631, 740, 866, 1012, 1178, 1368, 1587, 1835, 2117, 2440, 2804, 3217, 3687, 4215, 4812, 5487, 6244, 7096, 8055, 9128, 10331, 11681, 13187, 14870, 16752, 18846, 21180 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of partitions of n into distinct parts if there are two types of 1's, two types of 2's and two types of 3's.

LINKS

Table of n, a(n) for n=0..50.

FORMULA

a(n) = A036469(n) + A036469(n-3) - A036469(n-4) - A036469(n-7).

a(n) ~ 2*exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 11 2020

MATHEMATICA

nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) (1 + x^3) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 4, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}]

CROSSREFS

Cf. A000009, A000098, A022567, A036469, A052816, A329289.

Sequence in context: A127758 A185599 A211519 * A342493 A325547 A242340

Adjacent sequences:  A329381 A329382 A329383 * A329385 A329386 A329387

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 07 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 02:45 EDT 2021. Contains 348048 sequences. (Running on oeis4.)