login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211521
Number of ordered triples (w,x,y) with all terms in {1,...,n} and w + 2x = 4y.
3
0, 0, 1, 2, 4, 5, 9, 11, 16, 18, 25, 28, 36, 39, 49, 53, 64, 68, 81, 86, 100, 105, 121, 127, 144, 150, 169, 176, 196, 203, 225, 233, 256, 264, 289, 298, 324, 333, 361, 371, 400, 410, 441, 452, 484, 495, 529, 541, 576, 588, 625, 638, 676, 689, 729, 743
OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211422.
Also, number of ordered pairs (w,x) with both terms in {1,...,n} and w+2x divisible by 4. - Pontus von Brömssen, Jan 19 2020
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
a(n) = (2*n^2-n+1+(n-1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+1-(-1)^n)/4))/8. - Luce ETIENNE, Dec 31 2015
G.f.: x^2*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)). - Colin Barker, Dec 02 2017
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w + 2 x - 4 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211521 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {0, 0, 1, 2, 4, 5, 9}, 56] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)) + O(x^40))) \\ Colin Barker, Dec 02 2017
(Magma) a:=[0]; for n in [1..55] do m:=0; for i, j in [1..n] do if (i+2*j) mod 4 eq 0 then m:=m+1; end if; end for; Append(~a, m); end for; a; // Marius A. Burtea, Jan 19 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 57); [0, 0] cat Coefficients(R!( x^3*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)))); // Marius A. Burtea, Jan 19 2020
CROSSREFS
Cf. A211422.
Sequence in context: A065514 A152186 A085765 * A039871 A365042 A161375
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2012
EXTENSIONS
Offset corrected by Pontus von Brömssen, Jan 19 2020
STATUS
approved