login
A063691
Number of solutions to x^2 + y^2 + z^2 = n in positive integers.
23
0, 0, 0, 1, 0, 0, 3, 0, 0, 3, 0, 3, 1, 0, 6, 0, 0, 3, 3, 3, 0, 6, 3, 0, 3, 0, 6, 4, 0, 6, 6, 0, 0, 6, 3, 6, 3, 0, 9, 0, 0, 9, 6, 3, 3, 6, 6, 0, 1, 6, 6, 6, 0, 6, 12, 0, 6, 6, 0, 9, 0, 6, 12, 0, 0, 6, 12, 3, 3, 12, 6, 0, 3, 3, 12, 7, 3, 12, 6, 0, 0, 12, 3, 9, 6, 0, 15, 0, 3, 15
OFFSET
0,7
FORMULA
G.f.: (Sum_{m>=1} x^(m^2))^3.
EXAMPLE
a(5)=0;
a(6)=3 because 1^2+1^2+2^2 = 1^2+2^2+1^2 = 2^2+1^2+1^2 = 6;
a(27)=4 because 1^2+1^2+5^2 = 1^2+5^2+1^2 = 3^2+3^2+3^2 = 5^2+1^2+1^2 = 27.
MATHEMATICA
r[n_] := Reduce[ x>0 && y>0 && z>0 && x^2 + y^2 + z^2 == n, {x, y, z}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === Or, Length[rn], True, 1]; Table[a[n], {n, 0, 89}](* Jean-François Alcover, May 10 2012 *)
(EllipticTheta[3, 0, x] - 1)^3/8 + O[x]^100 // CoefficientList[#, x]& (* Jean-François Alcover, Jul 30 2017 *)
CROSSREFS
Sequence without zeros: A014465.
Cf. A063725, A063730, A211639 (partial sums).
Column k=3 of A337165.
Sequence in context: A341794 A033685 A272974 * A359967 A284281 A075874
KEYWORD
easy,nice,nonn
AUTHOR
Andrew A. Doroshev (andy(AT)ip.rsu.ru), Aug 23 2001
STATUS
approved