OFFSET
1,2
COMMENTS
Let b(n) = n-th number of form x^2 + y^2 + z^2, x,y,z >= 1 (A000408); a(n) = number of solutions (x,y,z) to x^2 + y^2 + z^2 = b(n).
The a(n) are also the degeneracies of the energy levels E(n) in the three-dimensional cubic "particle-in-a-box" model in elementary quantum mechanics. - A. Timothy Royappa, Jan 09 2009
Continuously increase the radius of a sphere centered at the origin. Whenever the number of entire unit cubes that fit into one quadrant of the sphere increases (cf. A237707), list the number of additional cubes. - M. F. Hasler, Jun 25 2022
REFERENCES
G. M. Barrow, Physical Chemistry (6th ed.), McGraw-Hill, 1996, p. 69.
LINKS
Daniel Leary, Table of n, a(n) for n = 1..8283
EXAMPLE
b(1) = 3 = 1^2 + 1^2 + 1^2 (1 way), so a(1) = 1;
b(2) = 6 = 2^2 + 1^2 + 1^2 (3 ways), so a(2) = 3; etc.
PROG
(PARI) for(n=1, 200, r=sqrtint(n); s=0; for(i=1, r, si=i*i; for(j=1, r, sj=j*j; for(k=1, r, if(si+sj+k*k==n, s=s+1)))); if(s, print1(s, ", "))) /* Ralf Stephan, Aug 31 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
A. Timothy Royappa, 1997; entry revised Jun 13 2003
EXTENSIONS
More terms and better name from Ralf Stephan, Aug 31 2013
STATUS
approved