login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304586 A linear mapping a(n) = x + d*n of pairs of integers (x,d), where the pairs are enumerated by the counterclockwise square spiral (an axis-parallel number spiral) starting at 0. 7
0, 1, 3, 3, 3, -1, -7, -7, -7, -7, 2, 13, 26, 27, 28, 29, 30, 15, -2, -21, -42, -43, -44, -45, -46, -47, -23, 3, 31, 61, 93, 95, 97, 99, 101, 103, 105, 71, 35, -3, -43, -85, -129, -131, -133, -135, -137, -139, -141, -143, -96, -47, 4, 57, 112, 169, 228, 231, 234, 237, 240, 243 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The sequence is a solution to the riddle described in the comments of A304584 without the restriction of x and d to nonnegative numbers.
LINKS
EXAMPLE
This is the standard counterclockwise square spiral starting at 0. - N. J. A. Sloane, Oct 17 2019
d:
3 | 36--35--34--33--32--31--30 55
| | | |
2 | 37 16--15--14--13--12 29 54
| | | | | |
1 | 38 17 4---3---2 11 28 53
| | | | | | | |
0 | 39 18 5 0---1 10 27 52
| | | | | | |
-1 | 40 19 6---7---8---9 26 51
| | | | |
-2 | 41 20--21--22--23--24--25 50
| | |
-3 | 42--43--44--45--46--47--48--49
_________________________________
x: -3 -2 -1 0 1 2 3 4
.
a(9) = 2 + 9*(-1) = -7 because the 9th position in the spiral corresponds to x = 2 and d = -1,
a(14) = 0 + 14*2 = 28 because the 14th position in the spiral corresponds to x = 0 and d = 2,
a(25) = 3 + 25*(-2) = -47 because the 25th position in the spiral corresponds to x = 3 and d = -2.
MAPLE
square2pair:=proc(sq)local w, k; w:=floor(sqrt(sq)); k:=floor(w/2); if modp(sq, 2)=0 then return[-k, k]; else return[k+1, -k]; fi; end:pos2pS:=proc(n)local w, q, Q, e, E, sp; w:=floor(sqrt(n)); q := w^2; Q:=(w+1)^2; e:=n-q; E:=Q-n; if e<E then sp:=square2pair(q); if modp(q, 2)=0 then return[sp[1], sp[2]-e]; else return[sp[1], sp[2]+e]; fi; else sp:=square2pair(Q); if modp(Q, 2)=0 then return[sp[1]+E, sp[2]]; else return[sp[1]-E, sp[2]]; fi; fi; end:WhereFlea:=proc(n) local x, d, pair; pair:=pos2pS(n); x:=pair[1]; d:=pair[2]; return x+d*n; end: seq(WhereFlea(n), n=0..61); # Rainer Rosenthal, May 24 2018
CROSSREFS
Sequence in context: A014465 A226645 A243095 * A155969 A076237 A201432
KEYWORD
sign,look
AUTHOR
Hugo Pfoertner, May 16 2018
EXTENSIONS
a(1) and a(2) corrected by Rainer Rosenthal, May 24 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 20:19 EST 2023. Contains 367614 sequences. (Running on oeis4.)