login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211535 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=4x+5y. 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 51, 53, 55, 57, 60, 63, 65, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 96, 99, 102, 106, 109 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

COMMENTS

For a guide to related sequences, see A211422.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,-1,0,0,-1,1).

FORMULA

a(n) = a(n-1) + a(n-4) - a(n-6) - a(n-9) + a(n-10).

G.f.: x^9 / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Dec 03 2017

a(n)-a(n-1)=A165190(n-9). - R. J. Mathar, Jun 23 2021

MATHEMATICA

t[n_] := t[n] = Flatten[Table[-w + 4 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]

c[n_] := Count[t[n], 0]

t = Table[c[n], {n, 0, 70}]  (* A211535 *)

FindLinearRecurrence[t]

LinearRecurrence[{1, 0, 0, 1, 0, -1, 0, 0, -1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 71] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(vector(9), Vec(x^9 / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, Dec 03 2017

CROSSREFS

Cf. A211422, A205772.

Sequence in context: A072688 A120504 A025772 * A029069 A266341 A279521

Adjacent sequences:  A211532 A211533 A211534 * A211536 A211537 A211538

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)