login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211433
Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w+2x+4y=0.
2
1, 1, 7, 11, 23, 27, 45, 53, 77, 85, 115, 127, 163, 175, 217, 233, 281, 297, 351, 371, 431, 451, 517, 541, 613, 637, 715, 743, 827, 855, 945, 977, 1073, 1105, 1207, 1243, 1351, 1387, 1501, 1541, 1661, 1701, 1827, 1871, 2003, 2047, 2185, 2233
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211422.
Also, a(n) is the number of ordered pairs (w,x) with both terms in {-n,...,0,...,n} and w+2x divisible by 4. If (w,x) is such a pair it is easy to see that (-w,x), (-w,-x), and (w,-x) also are such pairs. The number of pairs with both w and x positive is given by A211521(n). If w=0, x must be even, and if x=0, w must be divisible by 4. This means that a(n) = 4*A211521(n) + 2*floor(n/2) + 2*floor(n/4) + 1. Since the sequences A211521(n), floor(n/2), floor(n/4), and the constant sequence all satisfy the recurrence conjectured in the formula section, a(n) must also satisfy the recurrence, so this proves the conjecture. - Pontus von Brömssen, Jan 19 2020
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 0..1024
FORMULA
Conjectures from Colin Barker, May 15 2017: (Start)
G.f.: (1 + 5*x^2 + 4*x^3 + 5*x^4 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n>6.
(End)
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w + 2 x + 4 y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211433 *)
(t - 1)/2 (* integers *)
PROG
(Magma) a:=[]; for n in [0..50] do m:=0; for i, j in [-n..n] do if (i+2*j) mod 4 eq 0 then m:=m+1; end if; end for; Append(~a, m); end for; a; // Marius A. Burtea, Jan 19 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 + 5*x^2 + 4*x^3 + 5*x^4 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)))); // Marius A. Burtea, Jan 19 2020
CROSSREFS
Sequence in context: A372045 A362979 A284052 * A039511 A103667 A033207
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 10 2012
STATUS
approved