login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284052
Smallest prime representable in exactly n ways as p + 2*q, p and q primes.
2
7, 11, 23, 17, 41, 97, 89, 113, 163, 197, 257, 233, 373, 317, 389, 491, 613, 557, 641, 773, 761, 953, 977, 929, 1097, 1049, 1109, 1217, 1433, 1327, 1493, 1613, 1553, 1871, 1759, 1877, 1747, 2003, 2357, 2287, 2237, 2213
OFFSET
1,1
COMMENTS
The sequence is non-monotone and infinite.
LINKS
EXAMPLE
7 = 3 + 2*2,
11 = 7 + 2*2 = 5 + 2*3,
23 = 13 + 2*5 = 17 + 2*3 = 19 + 2*2,
17 = 3 + 2*7 = 7 + 2*5 = 11 + 2*3 = 13 + 2*2.
MAPLE
N:= 10000: # for all terms before the first term > N
V:= Vector(N):
Primes:= select(isprime, [2, seq(i, i=3..N, 2)]):
for ip from 1 to nops(Primes) do
p:= Primes[ip];
for iq from 1 do
r:= p+2*Primes[iq];
if r > N then break fi;
V[r]:= V[r]+1;
od od:
Nmax:= max(V):
A:= Vector(Nmax):
for p in Primes do
m:= V[p];
if m > 0 and A[m] = 0 then A[m]:= p fi;
od:
m:= min(select(t -> A[t]=0, [$1..Nmax])):
seq(A[i], i=1..m-1); # Robert Israel, Jun 07 2020
MATHEMATICA
np[n_] := np[n] = Length@ Select[n - 2*Prime@ Range@ PrimePi[n/2], PrimeQ]; a[n_] := Block[{p=2}, While[np[p] != n, p = NextPrime@ p]; p]; Array[a, 100] (* Giovanni Resta, Mar 19 2017 *)
CROSSREFS
Sequence in context: A175651 A372045 A362979 * A211433 A039511 A103667
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 19 2017
STATUS
approved