login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211638
Number of ordered triples (w, x, y) with all terms in {1, ..., n} and w^2 + x^2 + y^2 < n.
3
0, 0, 0, 0, 1, 1, 1, 4, 4, 4, 7, 7, 10, 11, 11, 17, 17, 17, 20, 23, 26, 26, 32, 35, 35, 38, 38, 44, 48, 48, 54, 60, 60, 60, 66, 69, 75, 78, 78, 87, 87, 87, 96, 102, 105, 108, 114, 120, 120, 121, 127, 133, 139, 139, 145, 157, 157, 163, 169, 169, 178, 178, 184
OFFSET
0,8
COMMENTS
For a guide to related sequences, see A211422.
LINKS
FORMULA
a(n) + A063691(n) = A211639(n). - R. J. Mathar, Jun 16 2023
a(n) = A211639(n-1). - R. J. Mathar, Jun 16 2023
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^2 + x^2 + y^2 < n, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 80]] (* A211638 *)
(* Peter J. C. Moses, Apr 13 2012 *)
PROG
(PARI) first(n) = {n = max(n, 2); n-=2; my(res = vector(n), v = vector(n)); forvec(x = vector(3, i, [1, sqrtint(n)]), c = sum(i = 1, 3, x[i]^2); if(c <= n, v[c]++)); for(i = 2, #v, v[i]+=v[i-1]); concat([0, 0], v)} \\ David A. Corneth, Jun 16 2023
CROSSREFS
Cf. A211422.
Sequence in context: A023958 A137751 A244481 * A211639 A010658 A128939
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 18 2012
STATUS
approved