login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211544
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w=3x-5y.
2
0, 0, 0, 1, 2, 3, 4, 5, 8, 10, 12, 15, 17, 21, 25, 28, 32, 36, 41, 46, 51, 56, 61, 68, 74, 80, 87, 93, 101, 109, 116, 124, 132, 141, 150, 159, 168, 177, 188, 198, 208, 219, 229, 241, 253, 264, 276, 288, 301, 314, 327, 340, 353, 368, 382, 396, 411, 425, 441
OFFSET
0,5
COMMENTS
For a guide to related sequences, see A211422.
FORMULA
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) - a(n-6) - a(n-8) + a(n-9).
G.f.: x^3*(1 + x)*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) - Colin Barker, Dec 03 2017
MATHEMATICA
t[n_] := t[n] = Flatten[Table[2 w - 3 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211544 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 0, 1, -1, 1, -1, 0, -1, 1}, {0, 0, 0, 0, 1, 1, 1, 2, 3}, 63] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(1 + x)*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Dec 03 2017
CROSSREFS
Cf. A211422.
Sequence in context: A369152 A223539 A332520 * A325109 A080713 A058664
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2012
STATUS
approved