OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211422.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1).
FORMULA
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9).
G.f.: x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Dec 03 2017
MATHEMATICA
t[n_] := t[n] = Flatten[Table[2 w + 3 x - 4 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 80}] (* A211542 *)
FindLinearRecurrence[t]
LinearRecurrence[{0, 1, 1, 1, -1, -1, -1, 0, 1}, {0, 0, 1, 2, 3, 5, 8, 10, 14}, 57] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Dec 03 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2012
STATUS
approved