|
|
A219276
|
|
Numbers n such that T_4(n) is prime, where T_4(x) = 8x^4 - 8x^2 + 1 is the fourth Chebyshev polynomial (of the first kind).
|
|
4
|
|
|
2, 3, 5, 8, 10, 14, 17, 19, 31, 32, 34, 35, 39, 48, 50, 51, 53, 54, 59, 61, 73, 76, 78, 84, 88, 90, 97, 101, 102, 105, 107, 110, 121, 126, 128, 134, 135, 139, 143, 144, 146, 152, 153, 158, 167, 171, 172, 178, 180, 184, 186, 187, 189, 201, 202, 203, 205, 207
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding primes are in A144131.
|
|
LINKS
|
|
|
MAPLE
|
filter:= n -> isprime(8*n^4 - 8*n^2+1):
|
|
MATHEMATICA
|
lst={}; Do[If[PrimeQ[ChebyshevT [4, n]], AppendTo[lst, n]], {n, 10^3}]; lst
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|