The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219276 Numbers n such that T_4(n) is prime, where T_4(x) = 8x^4 - 8x^2 + 1 is the fourth Chebyshev polynomial (of the first kind). 4
 2, 3, 5, 8, 10, 14, 17, 19, 31, 32, 34, 35, 39, 48, 50, 51, 53, 54, 59, 61, 73, 76, 78, 84, 88, 90, 97, 101, 102, 105, 107, 110, 121, 126, 128, 134, 135, 139, 143, 144, 146, 152, 153, 158, 167, 171, 172, 178, 180, 184, 186, 187, 189, 201, 202, 203, 205, 207 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The corresponding primes are in A144131. Sequence is infinite under Bunyakovsky's conjecture. - Charles R Greathouse IV, May 29 2013 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE filter:= n -> isprime(8*n^4 - 8*n^2+1): select(filter, [\$1..300]); # Robert Israel, Jan 22 2020 MATHEMATICA lst={}; Do[If[PrimeQ[ChebyshevT [4, n]], AppendTo[lst, n]], {n, 10^3}]; lst PROG (PARI) is(n)=isprime(polchebyshev(4, 1, n)) \\ Charles R Greathouse IV, May 29 2013 CROSSREFS Cf. A144131. Sequence in context: A325548 A094568 A251607 * A183871 A211542 A022955 Adjacent sequences: A219273 A219274 A219275 * A219277 A219278 A219279 KEYWORD nonn AUTHOR Michel Lagneau, Nov 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 21:57 EDT 2023. Contains 363028 sequences. (Running on oeis4.)