login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369152
Total number of digits in row n of Pascal's triangle.
1
1, 2, 3, 4, 5, 8, 10, 12, 14, 18, 25, 28, 31, 38, 44, 50, 57, 64, 69, 76, 88, 96, 102, 114, 125, 134, 142, 154, 166, 178, 191, 202, 215, 230, 244, 256, 268, 288, 303, 316, 334, 356, 372, 388, 411, 428, 447, 470, 490, 506, 529, 554, 573, 590, 618, 642, 660, 686
OFFSET
0,2
FORMULA
a(n) = 1 + n + Sum_{k=0..n} floor(log_10(C(n,k))).
a(n) = A055642(A003590(n)). - Michel Marcus, Jan 15 2024
MAPLE
a:= n-> length(cat(seq(binomial(n, k), k=0..n))):
seq(a(n), n=0..57); # Alois P. Heinz, Jan 15 2024
MATHEMATICA
A369152[n_Integer] := Total[IntegerLength[Binomial[n, #]] & /@ Range[0, n]]
First50Terms = Table[A369152[n], {n, 0, 49}]
PROG
(PARI) a(n) = #concat(vector(n+1, k, Str(binomial(n, k-1)))); \\ Michel Marcus, Jan 18 2024
(Python)
from math import comb
def A369152(n): return sum(len(str(comb(n, k))) for k in range(n+1)) # Chai Wah Wu, Feb 15 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bartlomiej Pawlik, Jan 14 2024
STATUS
approved