login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369153
Numbers k such that gcd(2*k^7+1, 3*k^3+2) > 1.
0
435, 1598, 2761, 3924, 5087, 6250, 7413, 8576, 9739, 10902, 12065, 13228, 14391, 15554, 16717, 17880, 19043, 20206, 21369, 22532, 23695, 24858, 26021, 27184, 28347, 29510, 30673, 31836, 32999, 34162, 35325, 36488, 37651, 38814, 39977, 41140, 42303, 43466
OFFSET
0,1
COMMENTS
This GCD is 1163 if k == 435 (mod 1163), or 1 otherwise.
FORMULA
a(n) = 435 + 1163*n.
a(n) = 2*a(n-1) - a(n-2).
G.f.: (435 + 728*x)/(1 - x)^2.
EXAMPLE
a(0) = 435, 2*435^7+1 = 5894606169966093751 and 3*435^3+2 = 246938627, gcd(5894606169966093751, 246938627) = 1163.
MATHEMATICA
Table[435+n*1163, {n, 0, 37}] (* James C. McMahon, Jan 15 2024 *)
CROSSREFS
Sequence in context: A160353 A268475 A212227 * A237302 A124043 A345554
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Jan 15 2024
STATUS
approved