login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124043
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with three fixed points.
1
1, 0, 435, 90944, 40563765, 32659846104, 43036380310735, 86514409614060000, 251739515511526387401, 1017865281673593548065520, 5534999211214597734889370091, 39411238922605740572075832485280
OFFSET
0,3
EXAMPLE
1
0, 0, 0, "1"
1, 0, 9, "0", 9, 0, 1
56, 216, 378, "435", 324, 189, 54", 27, 0, 1
13833, 49464, 84510, "90944", 69039, 38448, 16476, 5184, 1431, 216, 54, 0, 1
6699824, 23123880, 38358540, "40563765", 30573900, 17399178, 7723640, 2729295, 776520, 180100, 33372, 5355, 540, 90, 0, 1
etc...
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 6 do seq(coeff(f(t, n, 3), t, m)/3!^n, m=0..3*n); od;
CROSSREFS
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Nov 02 2006
STATUS
approved