|
|
A000459
|
|
Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed points.
(Formerly M4750 N2032)
|
|
14
|
|
|
1, 0, 1, 10, 297, 13756, 925705, 85394646, 10351036465, 1596005408152, 305104214112561, 70830194649795010, 19629681235869138841, 6401745422388206166420, 2427004973632598297444857, 1058435896607583305978409166, 526149167104704966948064477665
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Original definition: Number of permutations with no hits on 2 main diagonals. (Identical to definition of A000316.) - M. F. Hasler, Sep 27 2015
Card-matching numbers (Dinner-Diner matching numbers): A deck has n kinds of cards, 2 of each kind. The deck is shuffled and dealt in to n hands with 2 cards each. A match occurs for every card in the j-th hand of kind j. A(n) is the number of ways of achieving no matches. The probability of no matches is A(n)/((2n)!/2!^n).
Also, Penrice's Christmas gift numbers (see Penrice 1991).
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 3 pure options. - Raimundas Vidunas, Jan 22 2014
|
|
REFERENCES
|
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..100
Per Alexandersson and Frether Getachew, An involution on derangements, arXiv:2105.08455 [math.CO], 2021.
Shalosh B. Ekhad, Christoph Koutschan, and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
P. A. MacMahon, Combinatory Analysis Cambridge: The University Press 1915-1916
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
B. H. Margolius, Dinner-Diner Matching Probabilities
R. D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash equilibria, J. Economic Theory, 72:411--425, 1997.
L. I. Nicolaescu, Derangements and asymptotics of the Laplace transforms of large powers of a polynomial, New York J. Math. 10 (2004) 117-131.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98 (1991), 617-620.
John Riordan and N. J. A. Sloane, Correspondence, 1974
R. Vidunas, Counting derangements and Nash equilibria, arXiv preprint arXiv:1401.5400 [math.CO], 2014-2016.
Vidunas, Raimundas Counting derangements and Nash equilibria Ann. Comb. 21, No. 1, 131-152 (2017).
Wikipedia, Permutations of multisets
Index entries for sequences related to card matching
|
|
FORMULA
|
a(n) = A000316(n)/2^n.
a(n) = Sum_{k=0..n} Sum_{m=0..n-k} (-1)^k * n!/(k!*m!*(n-k-m)!) * 2^(2*k+m-n) * (2*n-2*m-k)!. - Max Alekseyev, Oct 06 2016
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (2 in this case) and coeff(R(x, n, k), x, j) is the coefficient of x^j of the rook polynomial R(x, n, k) = (k!^2*sum(x^j/((k-j)!^2*j!))^n (see Riordan or Stanley).
D-finite with recurrence a(n) = n*(2*n-1)*a(n-1)+2*n*(n-1)*a(n-2)-(2*n-1), a(1) = 0, a(2) = 1.
a(n) = round(2^(n/2 + 3/4)*Pi^(-1/2)*exp(-2)*n!*BesselK(1/2+n,2^(1/2))). - Mark van Hoeij, Oct 30 2011
(2*n+3)*a(n+3)=(2*n+5)^2*(n+2)*a(n+2)+(2*n+3)*(n+2)*a(n+1)-2*(2*n+5)*(n+1)*(n+2)*a(n). - Vaclav Kotesovec, Aug 31 2012
Asymptotic: a(n) ~ n^(2*n)*2^(n+1)*sqrt(Pi*n)/exp(2*n+2), Vaclav Kotesovec, Aug 31 2012
a(n) = (1/2^n)*A000316(n) = int_{0..inf} exp(-x)*(1/2*x^2 - 2*x + 1)^n dx. Asymptotic: a(n) ~ ((2*n)!/2^n)*exp(-2)*( 1 - 1/(2*n) - 23/(96*n^2) + O(1/n^3) ). See Nicolaescu. - Peter Bala, Jul 07 2014
Let S = x_1 + ... + x_n. a(n) equals the coefficient of (x_1*...*x_n)^2 in the expansion of product {i = 1..n} (S - x_i)^2 (MacMahon, Chapter III). - Peter Bala, Jul 08 2014
|
|
EXAMPLE
|
There are 297 ways of achieving zero matches when there are 2 cards of each kind and 4 kinds of card so a(4)=297.
From Peter Bala, Jul 08 2014: (Start)
a(3) = 10: the 10 permutations of the multiset {1,1,2,2,3,3} that have no fixed points are
{2,2,3,3,1,1}, {3,3,1,1,2,2}
{2,3,1,3,1,2}, {2,3,1,3,2,1}
{2,3,3,1,1,2}, {2,3,3,1,2,1}
{3,2,1,3,1,2}, {3,2,1,3,2,1}
{3,2,3,1,1,2}, {3,2,3,1,2,1}
(End)
|
|
MAPLE
|
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); seq(f(0, n, 2)/2!^n, n=0..18);
|
|
MATHEMATICA
|
RecurrenceTable[{(2*n+3)*a[n+3]==(2*n+5)^2*(n+2)*a[n+2]+(2*n+3)*(n+2)*a[n+1]-2*(2*n+5)*(n+1)*(n+2)*a[n], a[1]==0, a[2]==1, a[3]==10}, a, {n, 1, 25}] (* Vaclav Kotesovec, Aug 31 2012 *)
a[n_] := a[n] = n*(2*n-1)*a[n-1] + 2*n*(n-1)*a[n-2] - (2*n-1); a[0] = 1; a[1] = 0; a[2] = 1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 04 2013 *)
|
|
PROG
|
(Magma) I:=[0, 1]; [n le 2 select I[n] else n*(2*n-1)*Self(n-1)+2*n*(n-1)*Self(n-2)-(2*n-1): n in [1..30]]; // Vincenzo Librandi, Sep 28 2015
(PARI) a(n) = (2^n*round(2^(n/2+3/4)*Pi^(-1/2)*exp(-2)*n!*besselk(1/2+n, 2^(1/2))))/2^n;
vector(15, n, a(n))\\ Altug Alkan, Sep 28 2015
(PARI) { A000459(n) = sum(m=0, n, sum(k=0, n-m, (-1)^k * binomial(n, k) * binomial(n-k, m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); } \\ Max Alekseyev, Oct 06 2016
|
|
CROSSREFS
|
Cf. A000166, A008290, A059056-A059071, A033581, A059073.
Sequence in context: A258794 A239775 A059072 * A125288 A217487 A173479
Adjacent sequences: A000456 A000457 A000458 * A000460 A000461 A000462
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms and edited by Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
Edited by M. F. Hasler, Sep 27 2015
a(0)=1 prepended by Max Alekseyev, Oct 06 2016
|
|
STATUS
|
approved
|
|
|
|