Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 15 2024 12:54:23
%S 1,2,3,4,5,8,10,12,14,18,25,28,31,38,44,50,57,64,69,76,88,96,102,114,
%T 125,134,142,154,166,178,191,202,215,230,244,256,268,288,303,316,334,
%U 356,372,388,411,428,447,470,490,506,529,554,573,590,618,642,660,686
%N Total number of digits in row n of Pascal's triangle.
%F a(n) = 1 + n + Sum_{k=0..n} floor(log_10(C(n,k))).
%F a(n) = A055642(A003590(n)). - _Michel Marcus_, Jan 15 2024
%p a:= n-> length(cat(seq(binomial(n,k), k=0..n))):
%p seq(a(n), n=0..57); # _Alois P. Heinz_, Jan 15 2024
%t A369152[n_Integer] := Total[IntegerLength[Binomial[n, #]] & /@ Range[0, n]]
%t First50Terms = Table[A369152[n], {n, 0, 49}]
%o (PARI) a(n) = #concat(vector(n+1, k, Str(binomial(n,k-1)))); \\ _Michel Marcus_, Jan 18 2024
%o (Python)
%o from math import comb
%o def A369152(n): return sum(len(str(comb(n,k))) for k in range(n+1)) # _Chai Wah Wu_, Feb 15 2024
%Y Cf. A007318, A055642, A003590.
%K nonn,base
%O 0,2
%A _Bartlomiej Pawlik_, Jan 14 2024