login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211546
Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=3x-3y.
2
0, 0, 0, 2, 3, 4, 9, 11, 13, 21, 24, 27, 38, 42, 46, 60, 65, 70, 87, 93, 99, 119, 126, 133, 156, 164, 172, 198, 207, 216, 245, 255, 265, 297, 308, 319, 354, 366, 378, 416, 429, 442, 483, 497, 511, 555, 570, 585, 632, 648, 664, 714, 731, 748, 801, 819
OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211422.
FORMULA
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7).
G.f.: x^3*(2 + x + x^2 + x^3) / ((1 - x)^3*(1 + x + x^2)^2). - Colin Barker, Dec 03 2017
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w - 3 x + 3 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211546 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 2, 3, 4, 9}, 56] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(2 + x + x^2 + x^3) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^40))) \\ Colin Barker, Dec 03 2017
CROSSREFS
Cf. A211422.
Sequence in context: A118223 A359219 A212989 * A093514 A215810 A080231
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2012
STATUS
approved