login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211629 Number of ordered triples (w,x,y) with all terms in {-n, ..., -1, 1, ..., n} and 4w + x + y > 0. 2
0, 4, 31, 105, 252, 492, 851, 1353, 2024, 2884, 3959, 5273, 6852, 8716, 10891, 13401, 16272, 19524, 23183, 27273, 31820, 36844, 42371, 48425, 55032, 62212, 69991, 78393, 87444, 97164, 107579, 118713, 130592, 143236, 156671, 170921, 186012, 201964, 218803 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For a guide to related sequences, see A211422.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).

FORMULA

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n > 6.

G.f.: x*(4 + 19*x + 24*x^2 + 26*x^3 + 16*x^4 + 7*x^5) / ((1 - x)^4*(1 + x)*(1 + x^2)). - Colin Barker, Dec 05 2017

MATHEMATICA

t = Compile[{{u, _Integer}},

   Module[{s = 0}, (Do[If[4 w + x + y > 0,

         s = s + 1], {w, #}, {x, #}, {y, #}] &[

      Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

Map[t[#] &, Range[0, 60]]  (* A211629 *)

FindLinearRecurrence[%]

(* Peter J. C. Moses, Apr 13 2012 *)

LinearRecurrence[{3, -3, 1, 1, -3, 3, -1}, {0, 4, 31, 105, 252, 492, 851}, 36] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(0, Vec(x*(4 + 19*x + 24*x^2 + 26*x^3 + 16*x^4 + 7*x^5) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^40))) \\ Colin Barker, Dec 05 2017

CROSSREFS

Cf. A211422.

Sequence in context: A087689 A330788 A210377 * A263760 A297501 A296734

Adjacent sequences:  A211626 A211627 A211628 * A211630 A211631 A211632

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 22:13 EDT 2022. Contains 354868 sequences. (Running on oeis4.)