login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120486
Partial sums of A000188.
6
1, 2, 3, 5, 6, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 24, 25, 28, 29, 31, 32, 33, 34, 36, 41, 42, 45, 47, 48, 49, 50, 54, 55, 56, 57, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 82, 89, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 109, 110, 111, 114, 122, 123, 124, 125, 127, 128
OFFSET
1,2
COMMENTS
This sequence can also be described as the number of 3-term nondecreasing geometric progressions with no term exceeding n.
a(n) = A132188(n) - A132345(n). - Reinhard Zumkeller, Apr 21 2012
LINKS
Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette, 35 (3) 2008, p 189-194.
FORMULA
a(n) = 3n log(n) / Pi^2 + O(n). - Griffin N. Macris, Jan 28 2017
a(n) ~ 3*n*((log(n) + (3*gamma - 1))/ Pi^2 - 12*(Zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..floor(sqrt(n))} phi(k)*floor(n/k^2), where phi is the Euler totient function A000010. - Ridouane Oudra, Aug 18 2019
G.f.: (1/(1 - x)) * Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 26 2021
From Ridouane Oudra, Oct 05 2024: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..i} A010052(i*j).
a(n) = A132345(n) + n.
a(n) = (1/2)*A132189(n) + n.
a(n) = (1/2)*(A132188(n) + n). (End)
MAPLE
with(numtheory): seq(add(phi(k)*floor(n/k^2), k=1..floor(sqrt(n))), n=1..100); # Ridouane Oudra, Aug 18 2019
PROG
(Haskell)
a120486 n = a120486_list !! (n - 1)
a120486_list = scanl1 (+) a000188_list
-- Reinhard Zumkeller, Apr 22 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerry Myerson, Nov 21 2007
STATUS
approved