OFFSET
1,2
COMMENTS
This sequence can also be described as the number of 3-term nondecreasing geometric progressions with no term exceeding n.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Vaclav Kotesovec, Graph - the asymptotic ratio
Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette, 35 (3) 2008, p 189-194.
FORMULA
a(n) = 3n log(n) / Pi^2 + O(n). - Griffin N. Macris, Jan 28 2017
a(n) ~ 3*n*((log(n) + (3*gamma - 1))/ Pi^2 - 12*(Zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..floor(sqrt(n))} phi(k)*floor(n/k^2), where phi is the Euler totient function A000010. - Ridouane Oudra, Aug 18 2019
G.f.: (1/(1 - x)) * Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 26 2021
From Ridouane Oudra, Oct 05 2024: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..i} A010052(i*j).
a(n) = A132345(n) + n.
a(n) = (1/2)*A132189(n) + n.
a(n) = (1/2)*(A132188(n) + n). (End)
MAPLE
with(numtheory): seq(add(phi(k)*floor(n/k^2), k=1..floor(sqrt(n))), n=1..100); # Ridouane Oudra, Aug 18 2019
PROG
(Haskell)
a120486 n = a120486_list !! (n - 1)
a120486_list = scanl1 (+) a000188_list
-- Reinhard Zumkeller, Apr 22 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerry Myerson, Nov 21 2007
STATUS
approved