login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008761
Expansion of (1+x^18)/((1-x)*(1-x^2)*(1-x^3)).
1
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 38, 41, 46, 51, 56, 61, 68, 73, 80, 87, 94, 101, 110, 117, 126, 135, 144, 153, 164, 173, 184, 195, 206, 217, 230, 241, 254, 267, 280, 293, 308
OFFSET
0,3
MAPLE
seq(coeff(series((1+x^18)/((1-x)*(1-x^2)*(1-x^3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 09 2019
MATHEMATICA
Join[{1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19}, LinearRecurrence[{1, 1, 0, -1, -1, 1}, {21, 24, 27, 30, 33, 38}, 47]] (* G. C. Greubel, Aug 09 2019 *)
CoefficientList[Series[(1+x^18)/((1-x)(1-x^2)(1-x^3)), {x, 0, 70}], x] (* Harvey P. Dale, Jun 06 2021 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^18)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^18)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 09 2019
(Sage)
def A008761_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^18)/((1-x)*(1-x^2)*(1-x^3))).list()
A008761_list(60) # G. C. Greubel, Aug 09 2019
(GAP) a:=[21, 24, 27, 30, 33, 38];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4]-a[n-5]+a[n-6]; od; Concatenation([1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19], a); # G. C. Greubel, Aug 09 2019
CROSSREFS
Sequence in context: A211540 A001399 A069905 * A008760 A008759 A008758
KEYWORD
nonn
STATUS
approved