login
A337604
Number of ordered triples of positive integers summing to n, any two of which have a common divisor > 1.
21
0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 6, 105, 46, 120, 21, 181, 6, 153, 67, 189, 12, 262, 6, 213, 118, 231, 12, 337, 21, 306, 121, 303, 12, 433, 57, 369, 154, 378, 18, 583, 30, 435, 217, 465
OFFSET
0,9
COMMENTS
The first relatively prime triple (15,10,6) is counted under a(31).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10000
EXAMPLE
The a(6) = 1 through a(15) = 7 triples (empty columns indicated by dots, A = 10):
222 . 224 333 226 . 228 . 22A 339
242 244 246 248 366
422 262 264 266 393
424 282 284 555
442 336 2A2 636
622 363 428 663
426 446 933
444 464
462 482
624 626
633 644
642 662
822 824
842
A22
MATHEMATICA
stabQ[u_, Q_]:=Array[#1==#2||!Q[u[[#1]], u[[#2]]]&, {Length[u], Length[u]}, 1, And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {3}], stabQ[#, CoprimeQ]&]], {n, 0, 100}]
CROSSREFS
A014311 intersected with A337666 ranks these compositions.
A337667 counts these compositions of any length.
A335402 lists the positions of zeros.
A337461 is the coprime instead of non-coprime version.
A337599 is the unordered version, with strict case A337605.
A337605*6 is the strict version.
A000741 counts relatively prime 3-part compositions.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-relatively prime partitions.
A307719 counts pairwise coprime 3-part partitions.
A318717 counts pairwise non-coprime strict partitions.
A333227 ranks pairwise coprime compositions.
Sequence in context: A364018 A083238 A344574 * A117782 A317855 A301331
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 20 2020
STATUS
approved