OFFSET
0,1
COMMENTS
The name of this constant was suggested by Finch (2003).
Gaussian twin primes on the line x + i in the complex plane are Gaussian primes pair of the form (m - 1 + i, m + 1 + i). The numbers m are numbers such that (m-1)^2 + 1 and (m+1)^2 + 1 are both primes (A096012 plus 1).
Shanks (1960) conjectured that the number of these pairs with m <= x is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section and evaluated it by 0.4876.
The first 100 digits of 4*c were calculated by Ettahri et al. (2019).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.
LINKS
Keith Conrad, Hardy-Littlewood constants in: Mathematical properties of sequences and other combinatorial structures, Jong-Seon No et al. (eds.), Kluwer, Boston/Dordrecht/London, 2003, pp. 133-154, alternative link.
Salma Ettahri, Olivier Ramaré, Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 (Section 8).
Daniel Shanks, , A note on Gaussian twin primes, Mathematics of Computation, Vol. 14, No. 70 (1960), pp. 201-203.
FORMULA
Equals (Pi^2/8) * Product_{primes p == 1 (mod 4)} (1 - 4/p)*((p + 1)/(p - 1))^2.
EXAMPLE
0.487622778111571768611646391452388423131677124429735...
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/8 * Zs[4, 1, 4]/Z[4, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 04 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jan 15 2021
STATUS
approved