|
|
A197574
|
|
Decimal expansion of least x > 0 having cos(x) = cos(Pi*x)^2.
|
|
2
|
|
|
1, 0, 4, 8, 7, 5, 9, 9, 9, 7, 1, 1, 7, 4, 3, 8, 7, 3, 9, 6, 8, 4, 1, 3, 8, 9, 4, 3, 2, 6, 4, 8, 1, 6, 1, 7, 6, 1, 7, 8, 8, 1, 4, 9, 8, 5, 1, 0, 2, 7, 6, 9, 7, 2, 7, 1, 1, 8, 2, 8, 0, 6, 4, 8, 1, 9, 5, 0, 4, 2, 8, 7, 7, 5, 9, 7, 7, 0, 9, 4, 9, 5, 7, 0, 8, 8, 1, 5, 9, 3, 0, 1, 0, 4, 5, 3, 4, 7, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
|
|
LINKS
|
|
|
EXAMPLE
|
x=0.104875999711743873968413894326481617617881...
|
|
MATHEMATICA
|
b = 1; c = Pi; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .11}, WorkingPrecision -> 200]
Plot[{f[b*x], f[c*x]^2}, {x, 0, 0.2}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|