login
A309818
Digits of the 10-adic integer (987654321/(1-10^9))^(1/3).
5
1, 4, 8, 7, 1, 5, 1, 7, 8, 8, 5, 1, 2, 0, 6, 2, 9, 1, 0, 8, 2, 1, 7, 1, 7, 8, 2, 9, 0, 7, 1, 7, 1, 3, 1, 1, 5, 8, 2, 0, 4, 3, 7, 0, 6, 1, 3, 0, 9, 6, 4, 1, 6, 8, 0, 8, 0, 1, 6, 9, 3, 8, 5, 8, 8, 3, 3, 4, 8, 2, 8, 1, 7, 6, 1, 5, 3, 7, 9, 0, 3, 2, 6, 9, 6, 9, 6, 4, 0, 5, 3, 1, 0, 8, 7, 5, 2, 6, 9, 7
OFFSET
0,2
COMMENTS
x = ...113171709287171280192602158871517841.
x^3 = ...987654321987654321987654321987654321.
LINKS
EXAMPLE
1^3 == 1 (mod 10).
41^3 == 21 (mod 10^2).
841^3 == 321 (mod 10^3).
7841^3 == 4321 (mod 10^4).
17841^3 == 54321 (mod 10^5).
517841^3 == 654321 (mod 10^6).
1517841^3 == 7654321 (mod 10^7).
71517841^3 == 87654321 (mod 10^8).
871517841^3 == 987654321 (mod 10^9).
PROG
(PARI) N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)
CROSSREFS
Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): this sequence (k=3), A309819 (k=7), A309820 (k=9).
Sequence in context: A193081 A269574 A309824 * A201658 A146501 A197574
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 18 2019
STATUS
approved