login
A309820
Digits of the 10-adic integer (987654321/(1-10^9))^(1/9).
5
1, 8, 8, 0, 4, 8, 4, 1, 9, 6, 7, 0, 7, 7, 1, 0, 5, 0, 5, 6, 6, 3, 6, 0, 7, 8, 5, 4, 6, 6, 7, 3, 7, 8, 3, 3, 6, 5, 8, 6, 2, 2, 5, 7, 8, 4, 5, 0, 5, 0, 3, 1, 2, 4, 3, 3, 9, 7, 9, 7, 8, 7, 6, 1, 3, 4, 1, 2, 2, 9, 7, 7, 4, 9, 2, 8, 0, 0, 4, 3, 4, 9, 7, 5, 3, 7, 1, 9, 1, 1, 7, 8, 3, 5, 0, 7, 5, 2, 3, 3
OFFSET
0,2
COMMENTS
x = ...338737664587063665050177076914840881.
x^9 = ...987654321987654321987654321987654321.
LINKS
EXAMPLE
1^9 == 1 (mod 10).
81^9 == 21 (mod 10^2).
881^9 == 321 (mod 10^3).
881^9 == 4321 (mod 10^4).
40881^9 == 54321 (mod 10^5).
840881^9 == 654321 (mod 10^6).
4840881^9 == 7654321 (mod 10^7).
14840881^9 == 87654321 (mod 10^8).
914840881^9 == 987654321 (mod 10^9).
PROG
(PARI) N=100; M=987654321/(1-10^9); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N)
CROSSREFS
Digits of the 10-adic integer (987654321/(1-10^9))^(1/k): A309818 (k=3), A309819 (k=7), this sequence (k=9).
Sequence in context: A179639 A113809 A231097 * A309826 A321096 A345746
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 18 2019
STATUS
approved