login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309817
a(n) is the index of the n-th nonattacking queen placed by a greedy algorithm on a subset of N^N (see Comments for details).
2
1, 12, 45, 50, 80, 144, 162, 294, 448, 847, 1690, 1728, 1875, 1944, 2025, 2500, 2816, 3179, 3872, 4000, 4312, 4693, 6615, 7290, 7406, 8228, 9600, 11907, 12544, 13312, 15979, 18900, 20280, 22103, 23328, 24010, 28314, 32256, 33524, 37856, 37975, 39600, 45177
OFFSET
1,2
COMMENTS
We consider an infinite chessboard on the subset S of points X = (x_k)_{k>=0} of N^N such that Sum_{k>=0} x_k is finite:
- any point X = (x_k)_{k>=0} of S is uniquely identified by the positive number f(X) = Product_{k>=0} prime(k+1)^x_k (where prime(k) denotes the k-th prime number),
- two distinct points X = {x_k}_{k>=0} and Y = {y_k}_{k>=0} are aligned iff { x_k - y_k, k >= 0 } = { 0, m } for some m > 0.
We traverse S by increasing value of f, and place nonattacking queens as soon as possible; a(n) is the value of f applied to the position of the n-th queen.
This sequence is a generalization of A275897 and of A309362 to a space with infinite dimensions.
EXAMPLE
We first visit the origin and place our first queen on it.
Hence a(1) = Product_{k>=0} prime(k+1)^0 = 1.
This first queen attacks every point X such that f(X) is in A072774.
The second queen is placed at position (2, 1, 0, 0, 0...}; a(2) = 2^2 * 3 = 12.
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Aug 18 2019
STATUS
approved