login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309815
a(n) is the smallest positive integer x such that sqrt(2) + sqrt(x) is closer to an integer than any other value already in the sequence.
0
1, 2, 3, 6, 7, 13, 21, 112, 243, 275, 466, 761, 1128, 4704, 9523, 10730, 17579, 28085, 41041, 165312, 331299, 372815, 607754, 967441, 1410360, 5648160, 11300259, 12713402, 20707831, 32942845, 48005301, 192060400, 384143763, 432165299, 703818922, 1119543881, 1631318640
OFFSET
1,2
COMMENTS
If b(n) = round(sqrt(2) + sqrt(a(n))), then (b(n)^2 + 2 - a(n))/(2*b(n)) is an approximation for sqrt(2). Conjecture: all convergents of the continued fraction of sqrt(2) except 1 arise in this way. - Robert Israel, Aug 18 2019
EXAMPLE
a(6) = 13 because sqrt(2)+sqrt(13) is closer to an integer than any of the previous 5 terms.
MAPLE
R:= 1: delta:= sqrt(2)-1:
for r from 2 to 10000 do
x0:= ceil((r - sqrt(2)-delta)^2);
x1:= floor((r-sqrt(2)+delta)^2);
for x from x0 to x1 do
dx:= abs(sqrt(2)+sqrt(x)-r);
if is(dx < delta) then
delta:= dx;
R:= R, x;
fi
od
od:
R; # Robert Israel, Aug 18 2019
MATHEMATICA
d[x_] := Abs[x - Round[x]]; dm = 1; s = {}; Do[If[(d1 = d[Sqrt[2] + Sqrt[n]]) < dm, dm = d1; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Aug 18 2019 *)
PROG
(Python) import math
a = 2**(1/2)
l = []
closest = 1.0
for i in range(1, 100000000):
b = i**(1/2)
c = abs(a+b - round(a+b))
if c < closest:
print(i, c)
closest = c
l.append(i)
print(l)
CROSSREFS
Sequence in context: A233423 A328024 A376988 * A256800 A172105 A092482
KEYWORD
nonn
AUTHOR
Ben Paul Thurston, Aug 18 2019
EXTENSIONS
More terms from Giovanni Resta, Aug 19 2019
STATUS
approved