OFFSET
1,2
COMMENTS
If b(n) = round(sqrt(2) + sqrt(a(n))), then (b(n)^2 + 2 - a(n))/(2*b(n)) is an approximation for sqrt(2). Conjecture: all convergents of the continued fraction of sqrt(2) except 1 arise in this way. - Robert Israel, Aug 18 2019
EXAMPLE
a(6) = 13 because sqrt(2)+sqrt(13) is closer to an integer than any of the previous 5 terms.
MAPLE
R:= 1: delta:= sqrt(2)-1:
for r from 2 to 10000 do
x0:= ceil((r - sqrt(2)-delta)^2);
x1:= floor((r-sqrt(2)+delta)^2);
for x from x0 to x1 do
dx:= abs(sqrt(2)+sqrt(x)-r);
if is(dx < delta) then
delta:= dx;
R:= R, x;
fi
od
od:
R; # Robert Israel, Aug 18 2019
MATHEMATICA
d[x_] := Abs[x - Round[x]]; dm = 1; s = {}; Do[If[(d1 = d[Sqrt[2] + Sqrt[n]]) < dm, dm = d1; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Aug 18 2019 *)
PROG
(Python) import math
a = 2**(1/2)
l = []
closest = 1.0
for i in range(1, 100000000):
b = i**(1/2)
c = abs(a+b - round(a+b))
if c < closest:
print(i, c)
closest = c
l.append(i)
print(l)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ben Paul Thurston, Aug 18 2019
EXTENSIONS
More terms from Giovanni Resta, Aug 19 2019
STATUS
approved