login
A256800
Numbers k such that 3*R_k + 50 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
0
1, 2, 3, 6, 7, 13, 22, 28, 32, 126, 172, 186, 267, 650, 693, 1083, 3783, 12294, 18134, 53859, 66650, 72097, 98890, 125706, 200001
OFFSET
1,2
COMMENTS
Also, numbers k such that (10^k + 149)/3 is prime.
Terms from Kamada data. Note that Kamada does not recognize k=1 as 53 is a degenerate case of form AAA..ABA.
a(26) > 2.5*10^5.
EXAMPLE
For k=3, 3*R_3 + 50 = 333 + 50 = 383 which is prime.
MATHEMATICA
Select[Range[0, 250000], PrimeQ[(10^# + 149)/3] &]
PROG
(Magma) [n: n in [0..300] | IsPrime((10^n+149) div 3)]; // Vincenzo Librandi, Apr 11 2015
CROSSREFS
Cf. A002275.
Sequence in context: A328024 A376988 A309815 * A172105 A092482 A335099
KEYWORD
more,hard,nonn
AUTHOR
Robert Price, Apr 10 2015
STATUS
approved