login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256799
Catalan number analogs for A099927, the generalized binomial coefficients for Pell numbers (A000129).
1
1, 1, 6, 203, 40222, 46410442, 312163223724, 12237378320283699, 2796071362211148193590, 3723566980632561787914135870, 28901575272390972687956930234335380, 1307480498356321410289575304307661963042110, 344746842780849469098742541704318199701366091840620
OFFSET
0,3
COMMENTS
One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from Pell numbers (A000129).
LINKS
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
FORMULA
a(n) = Pell(2n)Pell(2n-1)...Pell(n+2)/Pell(n)Pell(n-1)...Pell(1) = A099927(2*n,n)/Pell(n+1) = A099929(n)/Pell(n+1), where Pell(k) = A000129(k).
a(n) ~ 2^(3/2) * (1+sqrt(2))^(n^2-n-1) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
EXAMPLE
a(5) = Pell(10)..Pell(7)/Pell(5)..Pell(1) = (2378*985*408*169)/(29*12*5*2*1) = 46410442.
a(3) = A099927(6,3)/Pell(3) = 2436/12 = 203.
MAPLE
p:= n-> (<<2|1>, <1|0>>^n)[1, 2]:
a:= n-> mul(p(i), i=n+2..2*n)/mul(p(i), i=1..n):
seq(a(n), n=0..12); # Alois P. Heinz, Apr 10 2015
MATHEMATICA
Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k], {k, 1, 2*n}]/(Product[Pell[k], {k, 1, n}])^2 / Pell[n+1], {n, 0, 15}] (* Vaclav Kotesovec, Apr 10 2015 *)
PROG
(Sage)
P=[lucas_number1(n, 2, -1) for n in [0..30]]
[1/P[n+1]*prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, Apr 10 2015
STATUS
approved