OFFSET
0,3
COMMENTS
One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from Pell numbers (A000129).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..50
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
FORMULA
a(n) = Pell(2n)Pell(2n-1)...Pell(n+2)/Pell(n)Pell(n-1)...Pell(1) = A099927(2*n,n)/Pell(n+1) = A099929(n)/Pell(n+1), where Pell(k) = A000129(k).
a(n) ~ 2^(3/2) * (1+sqrt(2))^(n^2-n-1) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
EXAMPLE
a(5) = Pell(10)..Pell(7)/Pell(5)..Pell(1) = (2378*985*408*169)/(29*12*5*2*1) = 46410442.
a(3) = A099927(6,3)/Pell(3) = 2436/12 = 203.
MAPLE
p:= n-> (<<2|1>, <1|0>>^n)[1, 2]:
a:= n-> mul(p(i), i=n+2..2*n)/mul(p(i), i=1..n):
seq(a(n), n=0..12); # Alois P. Heinz, Apr 10 2015
MATHEMATICA
Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k], {k, 1, 2*n}]/(Product[Pell[k], {k, 1, n}])^2 / Pell[n+1], {n, 0, 15}] (* Vaclav Kotesovec, Apr 10 2015 *)
PROG
(Sage)
P=[lucas_number1(n, 2, -1) for n in [0..30]]
[1/P[n+1]*prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, Apr 10 2015
STATUS
approved