login
A256801
Numbers k such that 7*R_k - 60 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
0
2, 4, 11, 23, 86, 148, 191, 232, 271, 656, 844, 1069, 1318, 1348, 1411, 2329, 4120, 4831, 12691, 14695, 17719, 39614, 139417
OFFSET
1,1
COMMENTS
Also, numbers k such that (7*10^k - 547)/9 is prime.
Terms from Kamada.
a(24) > 2*10^5.
EXAMPLE
For k=4, 7*R_4 - 60 = 7777 - 60 = 7717, which is prime.
MATHEMATICA
Select[Range[0, 250000], PrimeQ[(7*10^# - 547)/9] &]
PROG
(Magma) [n: n in [2..300] | IsPrime((7*10^n-547) div 9)]; // Vincenzo Librandi, Apr 11 2015
CROSSREFS
Cf. A002275.
Sequence in context: A298255 A298926 A292157 * A103669 A230711 A034485
KEYWORD
more,hard,nonn
AUTHOR
Robert Price, Apr 10 2015
EXTENSIONS
a(22) from Robert Price, May 16 2017
a(23) from Robert Price, Jan 26 2018
STATUS
approved