login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099929 Central Pellonomial coefficients. 4
1, 2, 30, 2436, 1166438, 3248730940, 52755584809356, 4992850354675749192, 2754130291777980970686150, 8854642279944231931659815098860, 165923943638796574201560736475319416580, 18121679707218614746613513717704194807763644600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..50

FORMULA

a(n) = A099927(2n, n).

a(n) ~ (1+sqrt(2))^(n^2) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015

MAPLE

p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end:

f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end:

a:= n-> f(2*n)/f(n)^2:

seq(a(n), n=0..15);  # Alois P. Heinz, Aug 15 2013

MATHEMATICA

Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k], {k, 1, 2*n}]/(Product[Pell[k], {k, 1, n}])^2, {n, 0, 20}] (* Vaclav Kotesovec, Apr 10 2015 *)

PROG

(Sage)

P=[lucas_number1(n, 2, -1) for n in [0..30]]

[prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]] # Tom Edgar, Apr 10 2015

CROSSREFS

Cf. A000129, A099927, A256831.

Sequence in context: A162841 A158260 A099800 * A136636 A220719 A030249

Adjacent sequences:  A099926 A099927 A099928 * A099930 A099931 A099932

KEYWORD

nonn

AUTHOR

Ralf Stephan, Nov 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)