

A335099


Lexicographically earliest sequence of distinct integers greater than 1 such that a(n) mod a(i)^2 >= a(i) for all i < n.


0



2, 3, 6, 7, 14, 15, 22, 23, 26, 30, 31, 34, 35, 42, 43, 58, 59, 62, 66, 67, 70, 71, 78, 79, 86, 87, 94, 95, 106, 107, 114, 115, 122, 123, 130, 131, 134, 138, 139, 142, 143, 158, 159, 166, 167, 170, 174, 175, 178, 179, 186, 187, 194, 195, 210, 211, 214, 215, 222
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In the sieve of Eratosthenes, first the even numbers are removed, then the multiples of 3, then multiples of 5. In this sieve first the numbers greater than 2 and modulo 0 or 1 (mod 4) are removed leaving (1) 2, 3, 6, 7, 10, 11, 14, 15. Then the numbers greater than 3 and modulo 0, 1, 2 (mod 9) are removed leaving (1) 2, 3, 6, 7, 14, 15. Then numbers modulo 0, 1, 2, 3, 4, 5 (mod 36) are removed.


LINKS

Table of n, a(n) for n=1..59.


PROG

(Python3)
from math import sqrt
length=100
s=list(range(2, length))
for p in range(int(sqrt(length))):
x = s[p]
if x==0 : continue
for i, e in enumerate(s):
if e>x and e%(x*x)<x:
s[i]=0 # mark sieved values as zero
result =[j for j in s if j!=0] # remove zeros
print(result)
(PARI) seq(n)={my(a=vector(n), k=1); for(n=1, #a, while(1, k++; my(f=1); for(i=1, n1, if(k%a[i]^2<a[i], f=0; break)); if(f, a[n]=k; break))); a} \\ Andrew Howroyd, Sep 12 2020


CROSSREFS

Cf. A000960, A000040.
Sequence in context: A256800 A172105 A092482 * A147303 A346593 A075427
Adjacent sequences: A335096 A335097 A335098 * A335100 A335101 A335102


KEYWORD

nonn,easy


AUTHOR

James Kilfiger, Sep 12 2020 (suggested by student)


EXTENSIONS

Terms a(29) and beyond from Andrew Howroyd, Sep 12 2020


STATUS

approved



