login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320998
Number of pseudo-square convex polyominoes with semiperimeter n.
2
1, 12, 44, 142, 399, 1044, 2571, 6168, 14357, 32786, 73746, 163872, 360462, 786468, 1703949, 3670040, 7864353, 16777260, 35651579, 75497508, 159383591, 335544350, 704643087, 1476395064, 3087007733, 6442451004, 13421772816, 27917287460, 57982058547, 120259084318
OFFSET
6,2
COMMENTS
The offset is not specified but appears to be 6.
LINKS
Srecko Brlek, Andrea Frosini, Simone Rinaldi, and Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13, (2006). See Section 4.2.
FORMULA
a(n) = 2*A045618(6+n) - A320999(n). - Andrew Howroyd, Oct 31 2018
MAPLE
seq(coeff(series(2*x^6/((1-x)^2*(1-2*x)^2)-add(k*x^(3*(k+1))/(1-x^(k+1))^2, k=1..ceil(n/3)), x, n+1), x, n), n = 6 .. 35); # Muniru A Asiru, Oct 31 2018
MATHEMATICA
seq[n_] := 2*x^6/((1 - x)^2*(1 - 2*x)^2) - Sum[k*x^(3*(k + 1))/(1 - x^(k + 1))^2 + O[x]^(6 + n), {k, 1, Ceiling[n/3]}] // CoefficientList[#, x]& // Drop[#, 6]&;
seq[30] (* Jean-François Alcover, Sep 07 2019, from PARI *)
PROG
(PARI) seq(n)={Vec(2*x^6/((1-x)^2*(1-2*x)^2) - sum(k=1, ceil(n/3), k*x^(3*(k+1))/(1-x^(k+1))^2 + O(x^(6+n))))} \\ Andrew Howroyd, Oct 31 2018
CROSSREFS
Sequence in context: A007899 A356322 A100156 * A294521 A309817 A340305
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 30 2018
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Oct 31 2018
STATUS
approved