login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294521
Denominators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.
3
1, 12, 44, 704, 73920, 320320, 9929920, 89369280, 3664140480, 84275231040, 1432678927680, 1432678927680, 87393414588480, 87393414588480, 6204932435782080, 14736714534982440, 132630430814841960, 5703108525038204280, 5703108525038204280, 18249947280122253696, 1843244675292347623296
OFFSET
0,2
COMMENTS
The corresponding numerators are given in A294520. Details are found there.
FORMULA
a(n) = denominator(V(5,1;n)) with V(5,1;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 1)) = Sum_{k=0..n} 1/A051624(k+1) = (1/4)*Sum_{k=0..n} (1/(k + 1/5) - 1/(k+1)). For the formula in terms of the digamma function see A294520.
EXAMPLE
See A294520 for the rationals.
PROG
(PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 1)))); \\ Michel Marcus, Nov 15 2017
CROSSREFS
Cf. A294520.
Sequence in context: A356322 A100156 A320998 * A309817 A340305 A194284
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 15 2017
STATUS
approved